Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39(1):31–59.
Article
PubMed
Google Scholar
Money KM, Stanwood GD. Developmental origins of brain disorders: roles for dopamine. Front Cell Neurosci. 2013;7:260.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’Amelio M, Puglisi-Allegra S, Mercuri N. The role of dopaminergic midbrain in Alzheimer’s disease: translating basic science into clinical practice. Pharmacol Res. 2018;130:414–9.
Article
PubMed
Google Scholar
Rehm J, Shield KD. Global burden of disease and the impact of mental and addictive disorders. Curr Psychiatry Rep. 2019;21(2):10.
Article
PubMed
Google Scholar
Ray Dorsey E, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A, Adsuar JC, et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.
Article
Google Scholar
Chhibber A, Watanabe AH, Chaisai C, Veettil SK, Chaiyakunapruk N. Global economic burden of attention-deficit/hyperactivity disorder: a systematic review. Pharmacoeconomics. 2021;39(4):399–420.
Article
PubMed
Google Scholar
Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F, et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7(2):e105–25.
Article
Google Scholar
Niyonambaza SD, Kumar P, Xing P, Mathault J, De KP, Boisselier E, et al. A Review of neurotransmitters sensing methods for neuro-engineering research. Appl Sci (Switzerland). 2019;9(21):4719.
CAS
Google Scholar
Castro V, Valenzuela C, Sanchez J, Pena K, Perez S, Ibarra J, et al. An Update of the classical and novel methods used for measuring fast neurotransmitters during normal and brain altered function. Curr Neuropharmacol. 2014;12(6):490–508.
Article
Google Scholar
Lakard S, Pavel IA, Lakard B. Electrochemical biosensing of dopamine neurotransmitter: a review. Biosensors. 2021;11(6):179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Liu J. Biosensors and sensors for dopamine detection. View. 2021;2(1):20200102.
Article
Google Scholar
Liang Y, Guo T, Zhou L, Offenhäusser A, Mayer D. Label-free split aptamer sensor for femtomolar detection of dopamine by means of flexible organic electrochemical transistors. Materials (Basel). 2020;13(11):2577.
Article
CAS
PubMed
Google Scholar
Ali MA, Hu C, Yuan B, Jahan S, Saleh MS, Guo Z, et al. Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat Commun. 2021;12(1):7077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donnelly M, Mao D, Park J, Xu G. Graphene field-effect transistors: the road to bioelectronics. J Phys D Appl Phys. 2018;51(49): 493001.
Article
Google Scholar
Huang H, Su S, Wu N, Wan H, Wan S, Bi H, et al. Graphene-based sensors for human health monitoring. Front Chem. 2019;7:399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Craciun MF, Russo S, Yamamoto M, Tarucha S. Tuneable electronic properties in graphene. Nano Today. 2011;6(1):42–60.
Article
CAS
Google Scholar
Zhang X, Jing Q, Ao S, Schneider GF, Kireev D, Zhang Z, et al. Ultrasensitive field-effect biosensors enabled by the unique electronic properties of graphene. Small. 2020;16(15):1902820.
Article
CAS
Google Scholar
Krsihna BV, Ravi S, Prakash MD. Recent developments in graphene based field effect transistors. Mater Today Proc. 2021;45:1524–8.
Article
CAS
Google Scholar
Chen F, Qing Q, Xia J, Tao N. Graphene field-effect transistors: Electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J. 2010;5(10):2144–53.
Article
CAS
PubMed
Google Scholar
Béraud A, Sauvage M, Bazán CM, Tie M, Bencherif A, Bouilly D. Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst. 2021;146(2):403–28.
Article
PubMed
Google Scholar
Yan F, Zhang M, Li J. Solution-gated graphene transistors for chemical and biological sensors. Adv Healthc Mater. 2014;3(3):313–31.
Article
CAS
PubMed
Google Scholar
Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34.
Article
CAS
PubMed
Google Scholar
Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Prog Mater Sci. 2012;57(7):1061–105.
Article
CAS
Google Scholar
Bueno R, Marciello M, Moreno M, Sánchez-Sánchez C, Martinez JI, Martinez L, et al. Versatile graphene-based platform for robust nanobiohybrid interfaces. ACS Omega. 2019;4(2):3287–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–519.
Article
CAS
PubMed
Google Scholar
Campos R, Borme J, Guerreiro JR, Machado G, Cerqueira MF, Petrovykh DY, et al. Attomolar label-free detection of dna hybridization with electrolyte-gated graphene field-effect transistors. ACS Sensors. 2019;4(2):286–93.
Article
CAS
PubMed
Google Scholar
Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X. Graphene field-effect transistor and its application for electronic sensing. Small. 2014;10(20):4042–65.
CAS
PubMed
Google Scholar
Fernandes E, Cabral PD, Campos R, Machado G, Cerqueira MF, Sousa C, et al. Functionalization of single-layer graphene for immunoassays. Appl Surf Sci. 2019;480:709–16.
Article
CAS
Google Scholar
Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007;7(11):3405–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayant K, Auluck K, Funke M, Anwar S, Phelps JB, Gordon PH, et al. Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. Phys Rev E. 2013;88(1): 012802.
Article
Google Scholar
Bhattacharyya IM, Shalev G. Electrostatically governed debye screening length at the solution-solid interface for biosensing applications. ACS Sens. 2020;5(1):154–61.
Article
CAS
PubMed
Google Scholar
Zheng Z, Zhang H, Zhai T, Xia F. Overcome debye length limitations for biomolecule sensing based on field effective transistors. Chin J Chem. 2021;39(4):999–1008.
Article
CAS
Google Scholar
Hwang MT, Heiranian M, Kim Y, You S, Leem J, Taqieddin A, et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat Commun. 2020;11(1):1543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu W, Liu Z, Jauregui LA, Yu Q, Pillai R, Cao H, et al. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors Actuators B Chem. 2010;150(1):296–300.
Article
CAS
Google Scholar
Vieira NCS, Borme J, MacHado G, Cerqueira F, Freitas PP, Zucolotto V, et al. Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm. J Phys Condens Matter. 2016;28(8): 085302.
Article
CAS
PubMed
Google Scholar
Coletti C, Romagnoli M, Giambra MA, Mišeikis V, Pezzini S, Marconi S, et al. Wafer-scale integration of graphene-based photonic devices. ACS Nano. 2021;15(2):3171–87.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Li X, Chen J, Yuan C. Micro/nano electrode array sensors: advances in fabrication and emerging applications in bioanalysis. Front Chem. 2020;8: 576836.
Article
Google Scholar
Campos R, Machado G, Cerqueira MF, Borme J, Alpuim P. Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron Eng. 2018;189:85–90.
Article
CAS
Google Scholar
Sheibani S, Capua L, Kamaei S, Akbari SSA, Zhang J, Guerin H, et al. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun Mater. 2021;2(1):10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakata T. Biologically coupled gate field-effect transistors meet in vitro diagnostics. ACS Omega. 2019;4(7):11852–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SJ, Song HS, Kwon OS, Chung JH, Lee SH, An JH, et al. Human dopamine receptor nanovesicles for gate-potential modulators in high-performance field-effect transistor biosensors. Sci Rep. 2014;4:4342.
Article
PubMed
PubMed Central
Google Scholar
Sessi V, Ibarlucea B, Seichepine F, Klinghammer S, Ibrahim I, Heinzig A, et al. Multisite dopamine sensing with femtomolar resolution using a CMOS enabled aptasensor chip. Front Neurosci. 2022;16: 875656.
Article
PubMed
PubMed Central
Google Scholar
Xu S, Zhang L, Wang B, Ruoff RS. Chemical vapor deposition of graphene on thin-metal films. Cell Rep Phys Sci. 2021;2(3): 100372.
Article
CAS
Google Scholar
Cabral PD, Domingues T, Machado G, Chicharo A, Cerqueira F, Fernandes E, et al. Clean-room lithographical processes for the fabrication of graphene biosensors. Materials (Basel). 2020;13(24):1–23.
Article
Google Scholar
Wu G, Tang X, Meyyappan M, Lai KWC. Chemical functionalization of graphene with aromatic molecule. In: IEEE-NANO 2015 - 15th International Conference on Nanotechnology. 2015; 1324–7.
Liu X, Hou Y, Chen S, Liu J. Controlling dopamine binding by the new aptamer for a FRET-based biosensor. Biosens Bioelectron. 2021;173: 112798.
Article
CAS
Google Scholar
Nakatsuka N, Yang K-A, Abendroth JM, Cheung KM, Xu X, Yang H, et al. Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science. 2018;362(6412):319–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Echtermeyer TJ, Lemme MC, Bolten J, Baus M, Ramsteiner M, Kurz H. Graphene field-effect devices. Eur Phys J Spec Top. 2007;148(1):19–26.
Article
Google Scholar
Vericat C, Vela ME, Salvarezza RC. Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys Chem Chem Phys. 2005;7(18):3258–68.
Article
CAS
PubMed
Google Scholar
Nakatsuka N, Abendroth JM, Yang KA, Andrews AM. Divalent cation dependence enhances dopamine aptamer biosensing. ACS Appl Mater Interfaces. 2021;13(8):9425–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu K, Fullerton-Shirey SK. Electric-double-layer-gated transistors based on two-dimensional crystals: recent approaches and advances. J Phys Mater. 2020;3(3): 032001.
Article
CAS
Google Scholar
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat Rev Methods Prim. 2021;1:66.
Article
CAS
Google Scholar
Liu Y, She P, Gong J, Wu W, Xu S, Li J, et al. A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B Chem. 2015;221:1542–53.
Article
CAS
Google Scholar
Wang W, Wang W, Davis JJ, Luo X. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Microchim Acta. 2015;182(5–6):1123–9.
Article
CAS
Google Scholar
Huang J, Liu Y, Hou H, You T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens Bioelectron. 2008;24(4):632–7.
Article
CAS
PubMed
Google Scholar
Park SJ, Lee J, Seo SE, Kim KH, Park CS, Lee SH, et al. High-performance conducting polymer nanotube-based liquid-ion gated field-effect transistor aptasensor for dopamine exocytosis. Sci Rep. 2020;10(1):3772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Álvarez-Martos I, Ferapontova EE. Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal Chem. 2016;88(7):3608–16.
Article
PubMed
Google Scholar
Wang Y, Kang K, Wang S, Kang W, Cheng C, Niu LM, et al. A novel label-free fluorescence aptasensor for dopamine detection based on an Exonuclease III- and SYBR Green I- aided amplification strategy. Sensors Actuators B Chem. 2020;305: 127348.
Article
CAS
Google Scholar
Chen J, Li Y, Huang Y, Zhang H, Chen X, Qiu H. Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Microchim Acta. 2019;186(2):58.
Article
Google Scholar
Tang Z, Jiang K, Sun S, Qian S, Wang Y, Lin H. A conjugated carbon-dot-tyrosinase bioprobe for highly selective and sensitive detection of dopamine. Analyst. 2019;144(2):468–73.
Article
CAS
PubMed
Google Scholar
Vázquez-Guardado A, Barkam S, Peppler M, Biswas A, Dennis W, Das S, et al. Enzyme-free plasmonic biosensor for direct detection of neurotransmitter dopamine from whole blood. Nano Lett. 2019;19(1):449–54.
Article
PubMed
Google Scholar
Davis SE, Korich AL, Ramsson ES. Enhancement of fast scan cyclic voltammetry detection of dopamine with tryptophan-modified electrodes. PLoS ONE. 2020;15(7): e0235407.
Article
PubMed
PubMed Central
Google Scholar
Senel M, Dervisevic M, Dervisevic M, Alhassen S, Alachkar A, Voelcker NH. Electrochemical micropyramid array-based sensor for in situ monitoring of dopamine released from neuroblastoma cells. Anal Chem. 2020;92(11):7746–53.
Article
CAS
PubMed
Google Scholar
Li H, Zhou K, Cao J, Wei Q, Te LC, Pei SE, et al. A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. Carbon N Y. 2021;171:16–28.
Article
Google Scholar
Xie X, Wang DP, Guo C, Liu Y, Rao Q, Lou F, et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal Chem. 2021;93(11):4916–23.
Article
CAS
PubMed
Google Scholar
Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WM. Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;263:120202.
Article
CAS
Google Scholar
Liu N, Xiang X, Fu L, Cao Q, Huang R, Liu H, et al. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens Bioelectron. 2021;188: 113340.
Article
CAS
PubMed
Google Scholar
Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry. 2007;70(1):127–33.
Article
CAS
PubMed
Google Scholar
Liu Q, Zhao C, Chen M, Liu Y, Zhao Z, Wu F, et al. Flexible multiplexed In2O3 nanoribbon aptamer-field-effect transistors for biosensing. iScience. 2020;23(9):101469.
Article
CAS
PubMed
PubMed Central
Google Scholar
May JM, Qu ZC, Nazarewicz R, Dikalov S. Ascorbic acid efficiently enhances neuronal synthesis of norepinephrine from dopamine. Brain Res Bull. 2013;90(1):35–42.
Article
CAS
PubMed
Google Scholar
Tessier F, Slater GW. Effective Debye length in closed nanoscopic systems: a competition between two length scales. Electrophoresis. 2006;27(3):686–93.
Article
CAS
PubMed
Google Scholar
Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buhidma Y, Rukavina K, Chaudhuri KR, Duty S. Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease. NPJ Parkinsons Dis. 2020;6:1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metzger RR, Brown JM, Sandoval V, Rau KS, Elwan MA, Miller GW, et al. Inhibitory effect of reserpine on dopamine transporter function. Eur J Pharmacol. 2002;456(1–3):39–43.
Article
CAS
PubMed
Google Scholar
De Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology. 2016;233(3):457–67.
Article
PubMed
Google Scholar
McKinley JW, Shi Z, Kawikova I, Hur M, Bamford IJ, Sudarsana Devi SP, et al. Dopamine deficiency reduces striatal cholinergic interneuron function in models of Parkinson’s disease. Neuron. 2019;103(6):1056-1072.e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eldrup E, Mogensen P, Jacobsen J, Pakkenberg H, Christensen NJ. CSF and plasma concentrations of free norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), 3,4-dihydroxyphenylalanine (DOPA), and epinephrine in Parkinson’s disease. Acta Neurol Scand. 1995;92(2):116–21.
Article
CAS
PubMed
Google Scholar
Goldstein DS, Holmes C, Sharabi Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain. 2012;135(6):1900–13.
Article
PubMed
PubMed Central
Google Scholar
Liu L, Duff K. A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J Vis Exp. 2008;21:960.
Google Scholar
Gong D, Yu H, Yuan X. A new method of subarachnoid puncture for clinical diagnosis and treatment: lateral atlanto-occipital space puncture. J Neurosurg. 2018;129(1):146–52.
Article
PubMed
Google Scholar
Zhang L, Cheng Y, Lei J, Liu Y, Hao Q, Ju H. Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine. Anal Chem. 2013;85(16):8001–7.
Article
CAS
PubMed
Google Scholar
Jinjin Z, Ming C, Caixia Y, Yifeng T. Development and application of an electrochemiluminescent flow-injection cell based on CdTe quantum dots modified electrode for high sensitive determination of dopamine. Analyst. 2011;136(19):4070–4.
Article
Google Scholar
Zhang K, Liu Y, Wang Y, Zhang R, Liu J, Wei J, et al. Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl Mater Interfaces. 2018;10(18):15388–94.
Article
CAS
PubMed
Google Scholar