Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Zhou J, Ren Y, Tan L, Song X, Wang M, Li Y, Cao Z, Guo C. Norcantharidin: research advances in pharmaceutical activities and derivatives in recent years. Biomed Pharmacother. 2020;131:110755.
Article
PubMed
CAS
Google Scholar
Zhu M, Shi X, Gong Z, Su Q, Yu R, Wang B, Yang T, Dai B, Zhan Y, Zhang D, et al. Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner. Pharmacol Res. 2020;158:104868.
Article
PubMed
CAS
Google Scholar
Yu Z, Li L, Wang C, He H, Liu G, Ma H, Pang L, Jiang M, Lu Q, Li P, et al. Cantharidin induces apoptosis and promotes differentiation of AML cells through nuclear receptor Nur77-mediated signaling pathway. Front Pharmacol. 2020;11:1321.
Article
PubMed
PubMed Central
Google Scholar
Xu MD, Liu L, Wu MY, Jiang M, Shou LM, Wang WJ, Wu J, Zhang Y, Gong FR, Chen K, et al. The combination of cantharidin and antiangiogenic therapeutics presents additive antitumor effects against pancreatic cancer. Oncogenesis. 2018;7(11):94.
Article
PubMed
PubMed Central
Google Scholar
Song M, Wang X, Luo Y, Liu Z, Tan W, Ye P, Fu Z, Lu F, Xiang W, Tang L, et al. Cantharidin suppresses gastric cancer cell migration/invasion by inhibiting the PI3K/Akt signaling pathway via CCAT1. Chem Biol Interact. 2020;317:108939.
Article
PubMed
CAS
Google Scholar
Guo Z, Liu Y, Cheng X, Wang D, Guo S, Jia M, Ma K, Cui C, Wang L, Zhou H. Versatile biomimetic cantharidin-tellurium nanoparticles enhance photothermal therapy by inhibiting the heat shock response for combined tumor therapy. Acta Biomater. 2020;110:208–20.
Article
PubMed
CAS
Google Scholar
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao F, Ma X, Sun X, Liang Q, Xu H, et al. Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate beta-catenin nuclear translocation and LEF1 translation. Int J Biol Sci. 2021;17(10):2504–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng K, Chen R, Sun Y, Tan Z, Liu Y, Cheng X, Leng J, Guo Z, Xu P. Cantharidin-loaded functional mesoporous titanium peroxide nanoparticles for non-small cell lung cancer targeted chemotherapy combined with high effective photodynamic therapy. Thorac Cancer. 2020;11(6):1476–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang GS. Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol. 1989;26(2):147–62.
Article
PubMed
CAS
Google Scholar
Zhang JP, Qian DH, Qi LH. Effects of cantharidin on interleukin-2 and interleukin-1 production in mice in vivo. Zhongguo Yao Li Xue Bao. 1992;13(3):263–64.
PubMed
CAS
Google Scholar
Till JS, Majmudar BN. Cantharidin poisoning. South Med J. 1981;74(4):444–47.
Article
PubMed
CAS
Google Scholar
Yao H, Zhao J, Wang Z, Lv J, Du G, Jin Y, Zhang Y, Song S, Han G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an effective strategy for application of a poisonous traditional chinese medicine. Colloids Surf B Biointerfaces. 2020;196:111285.
Article
PubMed
CAS
Google Scholar
Karras DJ, Farrell SE, Harrigan RA, Henretig FM, Gealt L. Poisoning from “Spanish fly” (cantharidin). Am J Emerg Med. 1996;14(5):478–83.
Article
PubMed
CAS
Google Scholar
Wang G, Dong J, Deng L. Overview of cantharidin and its analogues. Curr Med Chem. 2018;25(17):2034–44.
Article
PubMed
CAS
Google Scholar
Zang GH, Li R, Zhou RS, Hao L, He HG, Zhang WD, Dong Y, Han CH. Effects of disodium cantharidinate on dendritic cells of patients with bladder carcinoma. Oncol Lett. 2018;15(2):2273–77.
PubMed
Google Scholar
Li YD, Mao Y, Dong XD, Lei ZN, Yang Y, Lin L, Ashby CJ, Yang DH, Fan YF, Chen ZS. Methyl-cantharidimide (MCA) has anticancer efficacy in ABCB1- and ABCG2-overexpressing and cisplatin resistant cancer cells. Front Oncol. 2020;10:932.
Article
PubMed
PubMed Central
Google Scholar
Li WZ, Han WX, Zhao N, He SM, Liang F, Fu LN, Zhang ZR, Zhai XF, Yang LB. A novel embolic microspheres with micro nano binary progressive structure for transarterial chemoembolization applications. Eur J Pharm Sci. 2020;153:105496.
Article
CAS
Google Scholar
Deng L, Tang S. Norcantharidin analogues: a patent review (2006–2010). Expert Opin Ther Pat. 2011;21(11):1743–53.
Article
PubMed
CAS
Google Scholar
Tu GG, Zhan JF, Lv QL, Wang JQ, Kuang BH, Li SH. Synthesis and antiproliferative assay of norcantharidin derivatives in cancer cells. Med Chem. 2014;10(4):376–81.
Article
PubMed
CAS
Google Scholar
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med. 2020;15:55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y. Study on the effect of norcantharidin in the treatment of ovarian cancer. Electron J Practical Gynecologic Endocrinol. 2019;6(16):100.
CAS
Google Scholar
Wu X, Chen T, Shi L, Sun B, Wu S, Luo M. Observation on the clinical effect of intrahepatic injection of sodium demethylcantharidate by percutaneous liver puncture under ultrasound. Contemp Med. 2014;20(32):40–1.
Google Scholar
Yang S, Cai X, Huo B. 28 cases of primary liver cancer treated with sodium demethylcantharidate. New J Dig Dis. 1996;8:58–9.
Google Scholar
Yang M, Liang B, Yu Q, Jian G, Wu Z, Lin J, Weng B. B-ultrasound-guided tumor center injection of norcantharidin for the treatment of 41 cases of middle-advanced hepatocellular carcinoma. People’s Military Surgeon. 1993;9:44–6.
Google Scholar
Wu Y, Li C. Effect of norcantharidin on radiotherapy and chemotherapy among patients of esophageal cancer. Med J Chin PAP. 2018;29(2):182–4.
Google Scholar
Li Z, Liu X, Liu H. 40 cases of advanced colorectal cancer treated with norcantharidin combined with FOLFOX4. Shandong Med J. 2010;50(46):109.
Google Scholar
Zhang L, Xiang H. Clinical observation of norcantharidin combined with conventional chemotherapy in the treatment of gastric cancer after surgery. Med Recapitulate. 2013;19(11):2087–8.
Google Scholar
Li J. Clinical efficacy and safety analysis of norcantharidin tablets adjuvant radiotherapy and chemotherapy in the treatment of esophageal cancer. J Med Forum. 2019;40(12):156–9.
CAS
Google Scholar
Ke H, Li X, Wang X. Treatment of primary hepatocellular carcinoma with iodine 125 particle implantation combined with norcantharidin sodium and the changes of serum VEGF and bFGF. Gansu Med J. 2017;36(8):622–5.
Google Scholar
Feng B. Efficacy analysis of radiotherapy combined with sodium norcantharidate for stage III cervical cancer. China Foreign Medical Treatment. 2010;29(3):40–1.
Google Scholar
Ke H, Li X. The clinical study of iodine-125 seed implantation combined with disodium norcantharidate in the treatment of primary liver cancer. Chin J Surg Onco. 2016;8(3):173–6.
Google Scholar
Li Z, Ma Q, Zhang Y, Wang X, Liu Y. Gemcitabine and cisplatin combined with norcantharidin sodium for the treatment of advanced NSCLC. Chin J Cancer Prev Treat. 2014;21(4):293–5.
CAS
Google Scholar
Guan Z. Clinical observation on adjuvant treatment of 50 cases of advanced NSCLC with sodium norcantharidin. J Qiqihar Med Univ. 2010;31(17):2727.
Google Scholar
Zhi X, Li G. Clinical observation on adjuvant treatment of 30 cases of advanced lung cancer with sodium norcantharidin. J Hebei North Univ (Medical Edition). 2008;25(3):60.
Google Scholar
Chen S, Wang J, Tan Q, Tian S. Sodium norcantharidin combined with DF regimen in the treatment of advanced gastric carcinoma. J Basic Clin Oncol. 2013;26(4):311–3.
Google Scholar
Xu Y, Meng Q, Su F, Zhao T. Clinical study of sodium norcantharidate combined with hepatic arterial chemoembolization in the treatment of advanced liver cancer. Med Recapitul. 2011;17(13):2058–9.
Google Scholar
Zhao P. Go to a sodoum cantharidate clinical observation of treatment of esophageal cancer with radiotherapy. Med J Chin People’s Health. 2010;22(13):1648–50.
Google Scholar
Fan C. The observation of the effeects of disodium norcantharidate in the treatment of advanced primary liver cancer. J Basic Clin Oncol. 2010;23(1):50–1.
Google Scholar
Li Y, Wu J, Liu H, Zhang L. Effects of norcantharidate sodium injection on immune function in patients with NSCLC. Chin J Gerontol. 2015;35(6):1538–40.
Google Scholar
Lu H, Huang G, Pan MS, Lin Y, Chen Q. Effects of cisplatin combined with norcantharidate sodium on the immune function of patients with NSCLC in acute phase. Hebei Med J. 2017;39(2):261–3.
Google Scholar
Bei YY, Chen XY, Liu Y, Xu JY, Wang WJ, Gu ZL, Xing KL, Zhu AJ, Chen WL, Shi LS, et al. Novel norcantharidin-loaded liver targeting chitosan nanoparticles to enhance intestinal absorption. Int J Nanomedicine. 2012;7:1819–27.
PubMed
PubMed Central
CAS
Google Scholar
Yan D, Ni LK, Chen HL, Chen LC, Chen YH, Cheng CC. Amphiphilic nanoparticles of resveratrol-norcantharidin to enhance the toxicity in zebrafish embryo. Bioorg Med Chem Lett. 2016;26(3):774–7.
Article
PubMed
CAS
Google Scholar
Liu MC, Ma XQ, Xu Y, Peng LH, Han M, Gao JQ. Liquid chromatography-tandem mass spectrometry evaluation of the pharmacokinetics of a diacid metabolite of norcantharidin loaded in folic acid-targeted liposomes in mice. J Pharm Biomed Anal. 2016;119:76–83.
Article
PubMed
CAS
Google Scholar
Wang L, He H, Tang X, Shao R, Chen D. A less irritant norcantharidin lipid microspheres: formulation and drug distribution. Int J Pharm. 2006;323(1–2):161–7.
CAS
Google Scholar
Liu M, Ma X, Jin Z, Li W, Guo M, Li F. Determination and pharmacokinetic study of the diacid metabolite of norcantharidin in beagle plasma by use of liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2013;405(28):9273–83.
Article
PubMed
CAS
Google Scholar
Matsumura Y. 35 years of discussions with Prof. Maeda on the EPR effect and future directions. J Control Release. 2022;348:966–9.
Article
PubMed
CAS
Google Scholar
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med. 2022;20(1):135.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun R, Dai J, Ling M, Yu L, Yu Z, Tang L. Delivery of triptolide: a combination of traditional chinese medicine and nanomedicine. J Nanobiotechnol. 2022;20(1):194.
Article
CAS
Google Scholar
Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang K, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for combined chemo/chemodynamic cancer therapy. J Nanobiotechnol. 2022;20(1):223.
Article
CAS
Google Scholar
Yang Y, Liu X, Ma W, Xu Q, Chen G, Wang Y, Xiao H, Li N, Liang XJ, Yu M, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials. 2021;265:120456.
Article
PubMed
CAS
Google Scholar
Zhang ZQ, Song SC. Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials. 2017;132:16–27.
Article
PubMed
CAS
Google Scholar
Xiao H, Guo Y, Liu H, Liu Y, Wang Y, Li C, Cisar J, Skoda D, Kuritka I, Guo L, et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy. Biomaterials. 2020;232:119701.
Article
PubMed
CAS
Google Scholar
Freidus LG, Kumar P, Marimuthu T, Pradeep P, Choonara YE. Theranostic mesoporous silica nanoparticles loaded with a curcumin-naphthoquinone conjugate for potential cancer intervention. Front Mol Biosci. 2021;8:670792.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li M, Du C, Guo N, Teng Y, Meng X, Sun H, Li S, Yu P, Galons H. Composition design and medical application of liposomes. Eur J Med Chem. 2019;164:640–53.
Article
PubMed
CAS
Google Scholar
Wu J, Ren T. Preparation and characterization of norcantharidin encapsulated in liposome. Chin Pharm J. 2005;40(19):49–53.
Google Scholar
Miao X. Studies on norcantharidin proliposome. Jilin University; 2006.
Google Scholar
Liu H. Production and pharmacokinetic research of NCTD-proliposome. Jilin University; 2008.
Google Scholar
Zhang R. Disposition of disodium norcantharidate in vivo and preparation of disodium norcantharidate liposome. Cham: Shandong University; 2009.
Google Scholar
Gu Z, Wang J, Guo Z, Tang J, Zhang X. Studies on preparation and drug release characteristics of norcantharidin liposomes in vitro. Anti Infect Pharm. 2012;9(4):277–80.
Google Scholar
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen S. The study of norcantharidin-loaded poly (ethylene glycol)-poly (caprolactone) block copolymeric micelles. Southern Medical University; 2012.
Google Scholar
Yin M, Yang Z, Bao Y, Gan J, Cai J. Preparation and characterization of norepinephrine cantharidin-poloxamer polymer nano-micelle. J Hubei Polytechnic Univ. 2015;31(6):43–6.
Google Scholar
Wang L, Chen D, Fang C. Preparation of norcantharidin nano-micelle and study on its antitumor effect. China Pharm. 2017;28(19):2680–4.
CAS
Google Scholar
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–31.
Article
PubMed
CAS
Google Scholar
Zeng Q, Sun M. Poly(lactide-co-glycolide) nanoparticles as carriers for norcantharidin. Mater Sci Eng C. 2009;29(3):708–13.
Article
CAS
Google Scholar
Wadhawan A, Singh J, Sharma H, Handa S, Singh G, Kumar R, Barnwal RP, Pal KI, Chatterjee M. Anticancer biosurfactant-loaded PLA-PEG nanoparticles induce apoptosis in human MDA-MB-231 breast cancer cells. ACS Omega. 2022;7(6):5231–41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ren J, Zhong Q, Li H, Yuan H, Yu X, Cheng H. Preparation and cytotoxicity of polylactic acid-polyethylene glycol nanoparticles loaded with norcantharidin. Pharm Care & Res. 2007;7(4):294–7.
CAS
Google Scholar
Huang G, Liu Y, Chen L. Chitosan and its derivatives as vehicles for drug delivery. Drug Deliv. 2017;24(sup1):108–13.
Article
PubMed
PubMed Central
Google Scholar
Feng W. Study on the nanoparticles of norcantharidin-hydroxypropyl chitosan and its in vitro anti-cancer activity. Shandong University of Technology; 2012.
Google Scholar
Liu Y, Luo X, Xu X, Gao N, Liu X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int J Pharm. 2017;517(1–2):1–7.
Article
PubMed
CAS
Google Scholar
Ding XY, Hong CJ, Liu Y, Gu ZL, Xing KL, Zhu AJ, Chen WL, Shi LS, Zhang XN, Zhang Q. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, using LC-MS/MS. Int J Nanomedicine. 2012;7:1723–35.
PubMed
PubMed Central
CAS
Google Scholar
Sharifalhoseini M, Es-Haghi A, Vaezi G, Shajiee H. Biosynthesis and characterisation of solid lipid nanoparticles and investigation of toxicity against breast cancer cell line. Iet Nanobiotechnol. 2021;15(8):654–63.
Article
PubMed
PubMed Central
Google Scholar
Tian H. Studies on norcantharidin-loaded solid lipid nanoparticles. Shandong University; 2007.
Google Scholar
Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv. 2021;28(1):478–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan Z, Yang K, Tang X, Bi Y, Ding Y, Deng M, Xia D, Zhao Y, Chen T. Norcantharidin nanostructured lipid carrier (NCTD-NLC) suppresses the viability of human hepatocellular carcinoma hepG2 cells and accelerates the apoptosis. J Immunol Res. 2022;2022:3851604.
Article
PubMed
PubMed Central
Google Scholar
Abourehab M, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a review of the state of the art. J Mater Chem B. 2022;10(15):2781–819.
Article
PubMed
CAS
Google Scholar
Li S, Liu W, Zhu J, Wu W. Study on preparation and release rate in vitro of norcantharidin cubic liquid crystalline nanoparticles. CJTCMP. 2017;32(12):5566–8.
CAS
Google Scholar
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. Int J Pharm X. 2022;4:100116.
PubMed
PubMed Central
CAS
Google Scholar
Xiong Y, Ma R, Tang H, Li F. Study on preparation and in vitro release of norcantharidin-loaded mesoporous silica nanoparticles. J Jiangxi Univ TCM. 2018;30(4):76–8.
Google Scholar
Kargozar S, Mollazadeh S, Kermani F, Webster TJ, Nazarnezhad S, Hamzehlou S, Baino F. Hydroxyapatite nanoparticles for improved cancer theranostics. J Funct Biomater. 2022;13(3):100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abdul-Monem MM, Kamoun EA, Ahmed DM, El-Fakharany EM, Al-Abbassy FH, Aly HM. Light-cured hyaluronic acid composite hydrogels using riboflavin as a photoinitiator for bone regeneration applications. J Taibah Univ Med Sci. 2021;16(4):529–39.
PubMed
PubMed Central
Google Scholar
Li J, Liu X, Park S, Miller AN, Terzic A, Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res A. 2019;107(3):631–42.
Article
PubMed
CAS
Google Scholar
Huang Z, Sun H, Lu Y, Zhao F, Liu C, Wang Q, Zheng C, Lu R, Song K. Strontium/chitosan/hydroxyapatite/norcantharidin composite that inhibits osteosarcoma and promotes osteogenesis in vitro. Biomed Res Int. 2020;2020:9825073.
PubMed
PubMed Central
Google Scholar
Liu W, Pan Y, Xiao W, Xu H, Liu D, Ren F, Peng X, Liu J. Recent developments on zinc(ii) metal-organic framework nanocarriers for physiological pH-responsive drug delivery. Medchemcomm. 2019;10(12):2038–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J Am Chem Soc. 2019;141(9):3782–6.
Article
PubMed
CAS
Google Scholar
Wang J, Huang X, Li H, Yan D, Huang W. Two zn(II) coordination polymers with anticancer drug norcantharidin as ligands for cancer chemotherapy. Dalton Trans. 2022;51(14):5624–34.
Article
PubMed
CAS
Google Scholar
Zhang M, He Y. Preparation and quality evaluation of norcantharidin nanosuspensions. J Int Pharm Res. 2019;46(3):211–7.
Google Scholar
Assaf SM, Maaroof KT, Altaani BM, Ghareeb MM, Abu AA. Jojoba oil-based microemulsion for transdermal drug delivery. Res Pharm Sci. 2021;16(4):326–40.
Article
PubMed
PubMed Central
Google Scholar
Zhang L, Sun X, Zhang ZR. An investigation on liver-targeting microemulsions of norcantharidin. Drug Deliv. 2005;12(5):289–95.
Article
PubMed
CAS
Google Scholar
Cao X, Zhu Q, Wang QL, Adu-Frimpong M, Wei CM, Weng W, Bao R, Wang YP, Yu JN, Xu XM. Improvement of oral bioavailability and Anti-Tumor Effect of Zingerone Self-Microemulsion Drug Delivery System. J Pharm Sci. 2021;110(7):2718–27.
Article
PubMed
CAS
Google Scholar
Zeng L, Zhang Y. Development, optimization and in vitro evaluation of norcantharidin loadedself-nanoemulsifying drug delivery systems (NCTD-SNEDDS). Pharm Dev Technol. 2017;22(3):399–408.
Article
PubMed
CAS
Google Scholar
Gui Y, Hu R, Wang B, Zhou H, Jin D. Preparation and stability of norcantharidin solid self-microemulsion. J Anhui Univ Chinese Med. 2017;36(2):76–9.
Google Scholar
Xu X, Li Y, Shen Y, Guo S. Synthesis and in vitro cellular evaluation of novel anti-tumor norcantharidin-conjugated chitosan derivatives. Int J Biol Macromol. 2013;62:418–25.
Article
PubMed
CAS
Google Scholar
Li M, Xu X, Lu F, Guo S. Primary in vitro and in vivo evaluation of norcantharidin-chitosan/poly (vinyl alcohol) for cancer treatment. Drug Deliv. 2014;21(4):293–301.
Article
PubMed
CAS
Google Scholar
Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, Zhang Q. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy. Nanomedicine-Uk. 2012;8(7):1172–81.
Article
CAS
Google Scholar
Xu X, Li Y, Wang F, Lv L, Liu J, Li M, Guo A, Jiang J, Shen Y, Guo S. Synthesis, in vitro and in vivo evaluation of new norcantharidin-conjugated hydroxypropyltrimethyl ammonium chloride chitosan derivatives as polymer therapeutics. Int J Pharm. 2013;453(2):610–9.
Article
PubMed
CAS
Google Scholar
Chi J, Jiang Z, Chen X, Peng Y, Liu W, Han B, Han B. Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates. Carbohydr Polym. 2019;226:115297.
Article
PubMed
CAS
Google Scholar
Jiang Z, Chi J, Han B, Liu W. Preparation and pharmacological evaluation of norcantharidin-conjugated carboxymethyl chitosan in mice bearing hepatocellular carcinoma. Carbohydr Polym. 2017;174:282–90.
Article
PubMed
CAS
Google Scholar
Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis activities of norcantharidin-conjugated carboxymethyl chitosan as a novel drug delivery system. Carbohydr Polym. 2019;214:80–9.
Article
PubMed
CAS
Google Scholar
Chi J, Jiang Z, Qiao J, Zhang W, Peng Y, Liu W, Han B. Antitumor evaluation of carboxymethyl chitosan based norcantharidin conjugates against gastric cancer as novel polymer therapeutics. Int J Biol Macromol. 2019;136:1–12.
Article
PubMed
CAS
Google Scholar
Wang YJ, Wang J, Zhang HY, He HB, Tang X. Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres. J Pharm Pharmacol. 2007;59(3):351–7.
Article
PubMed
CAS
Google Scholar
Lin X, Zhang B, Zhang K, Zhang Y, Wang J, Qi N, Yang S, He H, Tang X. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity. Expert Opin Drug Deliv. 2012;9(12):1449–62.
Article
PubMed
CAS
Google Scholar
Ma J, Teng H, Wang J, Zhang Y, Ren T, Tang X, Cai C. A highly stable norcantharidin loaded lipid microspheres: preparation, biodistribution and targeting evaluation. Int J Pharm. 2014;473(1–2):475–84.
Article
PubMed
CAS
Google Scholar
Shen Y, Li W. HA/HSA co-modified erlotinib-albumin nanoparticles for lung cancer treatment. Drug Des Devel Ther. 2018;12:2285–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan F, Li B, Shen F, Fu Q. Formulation and characterization of albumin microspheres containing norcantharidate for liver tumor targeting. Drug Deliv. 2015;22(6):862–8.
Article
PubMed
CAS
Google Scholar
Wang Q, Cheng Y, Zhang W, Zhang X. Study on preparation and in vitro release of norcantharidin-loaded chitosan microspheres. Chin J New Drugs. 2008;17(11):947–51.
CAS
Google Scholar
Liu Z, Zhao L, Tan X, Wu Z, Zhou N, Dong N, Zhang Y, Yin T, He H, Gou J, et al. Preclinical evaluations of Norcantharidin liposome and emulsion hybrid delivery system with improved encapsulation efficiency and enhanced antitumor activity. Expert Opin Drug Deliv. 2022;19(4):451–64.
Article
PubMed
CAS
Google Scholar
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, et al. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv. 2022;29(1):1959–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW, Wick MR, Myers DE, Waddick K, Ledbetter JA. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood. 1988;71(1):13–29.
Article
PubMed
CAS
Google Scholar
Zhang J, Tang Y, Qian B, Sheng H. Preparation and evaluation of norcantharidin-encapsulated liposomes modified with a novel CD19 monoclonal antibody 2E8. J Huazhong Univ Sci Technolog Med Sci. 2010;30(2):240–7.
Article
PubMed
CAS
Google Scholar
Zhang J, Shen D, Jia M, Zhao H, Tang Y. The targeting effect of Hm2E8b-NCTD-liposomes on B-lineage leukaemia stem cells is associated with the HLF-SLUG axis. J Drug Target. 2018;26(1):55–65.
Article
PubMed
Google Scholar
Zatovicova M, Kajanova I, Barathova M, Takacova M, Labudova M, Csaderova L, Jelenska L, Svastova E, Pastorekova S, Harris AL, et al. Novel humanized monoclonal antibodies for targeting hypoxic human tumors via two distinct extracellular domains of carbonic anhydrase IX. Cancer Metab. 2022;10(1):3.
Article
PubMed
PubMed Central
Google Scholar
Aldera AP, Govender D. Carbonic anhydrase IX: a regulator of pH and participant in carcinogenesis. J Clin Pathol. 2021.
Wang L, Zhang Y, Yang Z, Lu D, Fang C, Xu Q. Study on lung targeting of carbonic antibody IX modified norcantharidin nano-micelle. Pharmacol Clin Chin Materia Med. 2017;33(1):52–6.
Google Scholar
Speciale A, Muscara C, Molonia MS, Cristani M, Cimino F, Saija A. Recent advances in glycyrrhetinic acid-functionalized biomaterials for liver cancer-targeting therapy. Molecules. 2022;27(6):1775.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu J, Zhang W, Wang D, Li S, Wu W. Preparation and characterization of norcantharidin liposomes modified with stearyl glycyrrhetinate. Exp Ther Med. 2018;16(3):1639–46.
PubMed
PubMed Central
Google Scholar
Zhang H, Jiang Y, Ni X, Chen L, Wu M, Liu J, Yang B, Shan X, Yang L, Fan J, et al. Glycyrrhetinic acid-modified norcantharidin nanoparticles for active targeted therapy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14(1):114–26.
Article
PubMed
CAS
Google Scholar
Chang G, Wang Y, Huang X, Tan X, Wang Y, Ma H, Huang S, Wang Y. Preparation process of liver targeting norcantharidin liposomes modified by glycyrrhetinic acid and trans-activator of transcription. Traditional Chin Drug Res Clin Pharmacol. 2020;31(7):855–61.
CAS
Google Scholar
Grewal PK. The Ashwell-Morell receptor. Methods Enzymol. 2010;479:223–41.
Article
PubMed
CAS
Google Scholar
D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting-strategies and applications. J Control Release. 2015;203:126–39.
Article
PubMed
Google Scholar
Hu Z, Zhang L, Zhou Y, Zhang X. Synthesis of hepatocyte-targeting norcantharidin prodrug and preparation of its nanoparticles. Chin Pharm J. 2009;44(9):679–84.
CAS
Google Scholar
Hu Z, Zhou Y, Zhang X. Investigation on anticancer activity of nanoparticles loaded lactosyl-norcantharidin. Chin Traditional Herb Drugs. 2010;41(12):2005–10.
CAS
Google Scholar
Wang Q, Zhang L, Hu W, Hu Z, Zhang X. Preparation and in vitro antineoplastic activity of norcantharidin-associated galactosylated chitosan nanoparticles. Chin Pharm J. 2009;44(12):913–9.
CAS
Google Scholar
Hu W, Zhang L, Wang Q, Chen X, Bei Y, Xu J, Wang W, Zhang X. Study on an active hepatocyte-targeting antineoplastic activity of norcantharidin-loaded galactosylated chitosan nanoparticles. Chin J New Drugs. 2010;19(19):1814–20.
CAS
Google Scholar
Wu C, Guo W, Zhang L. Preparation of glycyrrhetic acid derivatives-modified norcantharidin liposome and study on its liver-targeting property in mice. China Pharm. 2009;20(28):2184–6.
CAS
Google Scholar
Zhou Q, Shi D, Mei S, Yang X. Preparation and characterization of galactosylated cholesterol ligand modified liposomes containing norcantharidin. Chin J Pharmaceuticals. 2019;50(10):1208–14.
Google Scholar
Zhang Z, Yang L, Hou J, Xia X, Wang J, Ning Q, Jiang S. Promising positive liver targeting delivery system based on arabinogalactan-anchored polymeric micelles of norcantharidin. Artif Cells Nanomed Biotechnol. 2018;46(sup3):630-40.
Google Scholar
Jiang S, Li M, Hu Y, Zhang Z, Lv H. Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for targeting delivery of norcantharidin to hepatic carcinoma. Carbohydr Polym. 2018;197:194–203.
Article
PubMed
CAS
Google Scholar
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: deciphering the role in tumor progression and metastasis. Cytokine. 2022;157:155968.
Article
PubMed
CAS
Google Scholar
Takahashi-Yanaga F, Kahn M. Targeting wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res. 2010;16(12):3153–62.
Article
PubMed
CAS
Google Scholar
Ghosh N, Hossain U, Mandal A, Sil PC. The wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci. 2019;1443(1):54–74.
Article
PubMed
Google Scholar
Hsieh CH, Chao KS, Liao HF, Chen YJ. Norcantharidin, derivative of cantharidin, for cancer stem cells. Evid Based Complement Alternat Med. 2013;2013:838651.
Article
PubMed
PubMed Central
Google Scholar
Wang WJ, Wu MY, Shen M, Zhi Q, Liu ZY, Gong FR, Tao M, Li W. Cantharidin and norcantharidin impair stemness of pancreatic cancer cells by repressing the beta-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol. 2015;47(5):1912–22.
Article
PubMed
CAS
Google Scholar
Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo beta-catenin attenuation by the integrin alpha5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials. 2019;188:160–72.
Article
PubMed
CAS
Google Scholar
Xu L, Bai Q, Zhang X, Yang H. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release. 2017;252:73–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Yang H, Wu X, Mao H, Gong Z, Wan Z, Zhang W, Wu Y, Gu R, Han N. Preparation, characterization and pharmacodynamic evaluation in vitro of norcantharidin-loaded folate-conjugated stealth niosomes. Chin J New Drugs. 2013;22(18):2174–8.
CAS
Google Scholar
Liu MC, Liu L, Wang XR, Shuai WP, Hu Y, Han M, Gao JQ. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo. Int J Nanomedicine. 2016;11:1395–412.
Article
PubMed
PubMed Central
Google Scholar
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.
Article
PubMed
PubMed Central
Google Scholar
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Uthaman S, Huh KM, Park IK. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res. 2018;22:22.
Article
PubMed
PubMed Central
Google Scholar
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine. 2019;14:2029–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao Y, Gu Y, Qin L, Chen L, Chen X, Cui W, Li F, Xiang N, He X. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces. 2021;200:111581.
Article
PubMed
CAS
Google Scholar
Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Kaleem M, Dalhat MH. Thermosensitive hydrogels loaded with resveratrol nanoemulsion: Formulation optimization by central composite design and evaluation in MCF-7 human breast cancer cell lines. Gels. 2022;8(7):450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou F, Xie M, Zhou H, Cai X, Ni J, Wang Z. Studies on preparation and drug release characteristics of norcantharidin temperature-sensitive in situ gel in vitro. Chin J Clin Pharm. 2017;26(3):177–80.
Google Scholar
Xie M, Cai X, Peng J, Jiang X, Ge M. Study on preparation and anti-hepatoma of norcantharidin thermosensitive in-situ gel. Chin J Mod Appl Pharm. 2017;34(9):1262–5.
Google Scholar
Xie MH, Ge M, Peng JB, Jiang XR, Wang DS, Ji LQ, Ying Y, Wang Z. In-vivo anti-tumor activity of a novel poloxamer-based thermosensitive in situ gel for sustained delivery of norcantharidin. Pharm Dev Technol. 2019;24(5):623–9.
Article
PubMed
CAS
Google Scholar
Li XY, Guan QX, Shang YZ, Wang YH, Lv SW, Yang ZX, Wang R, Feng YF, Li WN, Li YJ. Metal-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to treat liver cancer. World J Gastroenterol. 2021;27(26):4208–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao B, Luo J, Liu Y, Su S, Fu S, Yang X, Li B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int J Nanomedicine. 2021;16:4073–85.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Huang J, Wu J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater Sci. 2021;9(3):574–89.
Article
PubMed
CAS
Google Scholar
Yao Y, Su Z, Liang Y, Zhang N. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomedicine. 2015;10:6185–97.
PubMed
PubMed Central
CAS
Google Scholar
Zhou Y, Xu J, Guan M, Zhang X. Preparation of lactosyl-norcantharitin phospholipid complex and its pH-sensitive liposomes. Chin J New Drugs. 2011;20(17):1631–8.
CAS
Google Scholar
Zhou Y, Ye J. Liver targeting anti-tumor activity of pH-sensitive liposomes loaded with lactosyl-norcantharitin phospholipids complex. Chin Traditional Herb Drugs. 2014;45(19):2803–8.
CAS
Google Scholar
Li L, Xu Y, Milligan I, Fu L, Franckowiak EA, Du W. Synthesis of highly pH-responsive glucose poly(orthoester). Angew Chem Int Ed Engl. 2013;52(51):13699–702.
Article
PubMed
CAS
Google Scholar
Cong Y, Xiao H, Xiong H, Wang Z, Ding J, Li C, Chen X, Liang XJ, Zhou D, Huang Y. Dual drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung cancer. Adv Mater. 2018;30(11):1706220.
Article
Google Scholar
Wang S. Study on the construction and performance of cross-linked polymer nano-cooperative prodrugs in response to tumor microenvironment. Anhui University; 2021.
Google Scholar
Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials. 2012;33(18):4773–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiang H, Xue F, Yi T, Tham HP, Liu JG, Zhao Y. Cu2 – xS nanocrystals cross-linked with chlorin e6-functionalized polyethylenimine for synergistic photodynamic and photothermal therapy of cancer. ACS Appl Mater Interfaces. 2018;10(19):16344–51.
Article
PubMed
CAS
Google Scholar
Han L, Lv H, Wang D, Wang J, Tang M. Mitochondrial targeting function of norcantharidin TPP-PEG-PCL nanomicelles promotes apoptosis of liver tumor cells. Chin Traditional Herb Drugs. 2020;51(19):4943–53.
Google Scholar
He S, Li J, Cheng P, Zeng Z, Zhang C, Duan H, Pu K. Charge-reversal polymer nano-modulators for photodynamic immunotherapy of cancer. Angew Chem Int Ed Engl. 2021;60(35):19355–63.
Article
PubMed
CAS
Google Scholar
Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy. ACS Appl Mater Interfaces. 2019;11(20):18691–700.
Article
PubMed
CAS
Google Scholar
Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Light-activatable dual prodrug polymer nanoparticle for precise synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 2019;94:459–68.
Article
PubMed
CAS
Google Scholar
Dong H, Yang D, Hu Y, Song X. Recent advances in smart nanoplatforms for tumor non-interventional embolization therapy. J Nanobiotechnol. 2022;20(1):337.
Article
CAS
Google Scholar
Perez-Lopez A, Martin-Sabroso C, Gomez-Lazaro L, Torres-Suarez AI, Aparicio-Blanco J. Embolization therapy with microspheres for the treatment of liver cancer: state-of-the-art of clinical translation. Acta Biomater. 2022;149:1–15.
Article
PubMed
CAS
Google Scholar
Liu X, Heng WS, Paul, Li Q, Chan LW. Novel polymeric microspheres containing norcantharidin for chemoembolization. J Control Release. 2006;116(1):35–41.
Article
PubMed
CAS
Google Scholar
Song Y. Study on norcantharidin chitosan microspheres for transcatheter arterial chemoembolization. Suzhou University; 2010.
Google Scholar
Zhou X, Wang H, Bei Y, Xu J, Wang W, Zhang X. Preparation and in vitro drug release of norcantharidin sustained-release microsphere for hepatic arterial embolism. China Pharm. 2011;22(13):1185–9.
CAS
Google Scholar
Zhou X. Studies on the preparation and effect of the lipidic solid dispersion of norcantharidin microspheres for transcatheter arterial chemoembolization. Suzhou University; 2011.
Google Scholar
Zhang GY, Zhou XF, Zhou XY, Wen QY, You BG, Liu Y, Zhang XN, Jin Y. Effect of alginate-chitosan sustained release microcapsules for transhepatic arterial embolization in VX2 rabbit liver cancer model. J Biomed Mater Res A. 2013;101(11):3192–200.
PubMed
Google Scholar
Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci. 2015;16(3):4880–903.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu J, Liu Y, Yu Y, Li J, Luo J, Li M. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng C Mater Biol Appl. 2014;44:166–74.
Article
PubMed
CAS
Google Scholar
Zhang G. Studies on the preparation and effect of norcantharidin loaded silk fibroin/chitosan microspheres for transcatheter arterial chemoembolization. Suzhou University; 2013.
Google Scholar
Wen Q. Preparation of norcantharidin-N-chitosan/silk fibroin-microspheres and its tumor inhibitory effect. Suzhou University; 2013.
Google Scholar
Wen Q, Zhang G, Zhou X, Yuan Q, Zhang X, Jin Y. Anti-tumor effect of norcantharidin-N-chitosan/silk fibroin-microspheres in a rabbit model of hepatic arterial embolization. Chin J New Drugs. 2014;23(9):1075–80.
CAS
Google Scholar
Hu CM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323–34.
Article
PubMed
CAS
Google Scholar
Qi SS, Sun JH, Yu HH, Yu SQ. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv. 2017;24(1):1909–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric co-delivery systems in cancer treatment: an overview on component drugs’ dosage ratio effect. Molecules. 2019;24(6):1035.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ziberna L, Samec D, Mocan A, Nabavi SF, Bishayee A, Farooqi AA, Sureda A, Nabavi SM. Oleanolic acid alters multiple cell signaling pathways: implication in cancer prevention and therapy. Int J Mol Sci. 2017;18(3):643.
Article
PubMed
PubMed Central
Google Scholar
Liu D, Fang Z, Tang Z, Zou L, Leng J. Optimization of preparation process of norcantharidin and oleanolic acid liposome by central composite design-response surface method. West China J Pharm Sci. 2014;29(2):125–8.
CAS
Google Scholar
Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020;72(11):1491–512.
Article
PubMed
CAS
Google Scholar
Xiong Y, Tang H, Ma R, Li F. Preparation process of norcantharidin/tetrandrine dual loaded liposomes and their in vitro release characteristics. China J Chin Materia Med. 2018;43(12):2531–6.
Google Scholar
Xiong Y, Tang H, Liu W, Zhang T, Ma R, Mu C, Zhu Z, Li F. Characterization and evaluation of a folic acid receptor-targeted norcantharidin/tetrandrine dual-drug loaded delivery system. J Nanomater. 2019;2019:1–15.
Article
Google Scholar
Ren J, Li G, Zhao W, Lin L, Ye T. Norcantharidin combined with ABT-737 for hepatocellular carcinoma: therapeutic effects and molecular mechanisms. World J Gastroenterol. 2016;22(15):3962–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J Nanobiotechnol. 2020;18(1):114.
Article
CAS
Google Scholar
Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomedicine. 2020;15:9355–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang L, Ye M, Wang Y, Nie X, Yuan W, Wang Y. Study on optimizing drug loading process of norcantharidin exosomes by response surface methodology. J Mod Med Health. 2020;36(9):1297–301.
Google Scholar
Liang L, Zhao L, Wang Y, Wang Y. Treatment for hepatocellular carcinoma is enhanced when norcantharidin is encapsulated in exosomes derived from bone marrow mesenchymal stem cells. Mol Pharm. 2021;18(3):1003–13.
Article
PubMed
CAS
Google Scholar
Xie D, Xie J, Wan Y, Ma L, Qi X, Wang K, Yang S. Norcantharidin blocks Wnt/beta-catenin signaling via promoter demethylation of WIF-1 in glioma. Oncol Rep. 2016;35(4):2191–7.
Article
PubMed
CAS
Google Scholar
Chen YL, Hung MH, Chu PY, Chao TI, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Hsieh FS, Chen KF. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase. Biochem Pharmacol. 2017;138:49–60.
Article
PubMed
CAS
Google Scholar
Qiu P, Wang S, Liu M, Ma H, Zeng X, Zhang M, Xu L, Cui Y, Xu H, Tang Y, et al. Norcantharidin inhibits cell growth by suppressing the expression and phosphorylation of both EGFR and c-Met in human colon cancer cells. BMC Cancer. 2017;17(1):55.
Article
PubMed
PubMed Central
Google Scholar
He Q, Xue S, Tan Y, Zhang L, Shao Q, Xing L, Li Y, Xiang T, Luo X, Ren G. Dual inhibition of akt and ERK signaling induces cell senescence in triple-negative breast cancer. Cancer Lett. 2019;448:94–104.
Article
PubMed
CAS
Google Scholar
Chen YN, Chen JC, Yin SC, Wang GS, Tsauer W, Hsu SF, Hsu SL. Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int J Cancer. 2002;100(2):158–65.
Article
PubMed
CAS
Google Scholar
Chen S, Wan P, Ding W, Li F, He C, Chen P, Li H, Hu Z, Tan W, Li J. Norcantharidin inhibits DNA replication and induces mitotic catastrophe by degrading initiation protein Cdc6. Int J Mol Med. 2013;32(1):43–50.
Article
PubMed
Google Scholar
Huang S, Tuergong G, Zhu H, Wang X, Weng G, Ren Y. Norcantharidin induces G2/M arrest and apoptosis via activation of ERK and JNK, but not p38 signaling in human renal cell carcinoma ACHN cells. Acta Pharm. 2021;71(2):267–78.
Article
PubMed
CAS
Google Scholar
Yu CC, Ko FY, Yu CS, Lin CC, Huang YP, Yang JS, Lin JP, Chung JG. Norcantharidin triggers cell death and DNA damage through S-phase arrest and ROS-modulated apoptotic pathways in TSGH 8301 human urinary bladder carcinoma cells. Int J Oncol. 2012;41(3):1050–60.
Article
PubMed
CAS
Google Scholar
Zheng LC, Yang MD, Kuo CL, Lin CH, Fan MJ, Chou YC, Lu HF, Huang WW, Peng SF, Chung JG. Norcantharidin-induced apoptosis of AGS human gastric cancer cells through reactive oxygen species production, and caspase- and mitochondria-dependent signaling pathways. Anticancer Res. 2016;36(11):6031–42.
Article
PubMed
CAS
Google Scholar
Dong X, Li JC, Jiang YY, Xia MY, Tashiro S, Onodera S, Ikejima T. p38-NF-kappaB-promoted mitochondria-associated apoptosis and G2/M cell cycle arrest in norcantharidin-treated HeLa cells. J Asian Nat Prod Res. 2012;14(11):1008–19.
Article
PubMed
CAS
Google Scholar
Lv H, Li Y, Du H, Fang J, Song X, Zhang J. The synthetic compound norcantharidin induced apoptosis in mantle cell lymphoma in vivo and in vitro through the PI3K-Akt-NF-kappa B signaling pathway. Evid Based Complement Altern Med. 2013;2013:461487.
Article
Google Scholar
Liu XH, Blazsek I, Comisso M, Legras S, Marion S, Quittet P, Anjo A, Wang GS, Misset JL. Effects of norcantharidin, a protein phosphatase type-2A inhibitor, on the growth of normal and malignant haemopoietic cells. Eur J Cancer. 1995;31A(6):953–63.
Article
PubMed
CAS
Google Scholar
Shou LM, Zhang QY, Li W, Xie X, Chen K, Lian L, Li ZY, Gong FR, Dai KS, Mao YX, et al. Cantharidin and norcantharidin inhibit the ability of MCF-7 cells to adhere to platelets via protein kinase C pathway-dependent downregulation of alpha2 integrin. Oncol Rep. 2013;30(3):1059–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen YJ, Chang WM, Liu YW, Lee CY, Jang YH, Kuo CD, Liao HF. A small-molecule metastasis inhibitor, norcantharidin, downregulates matrix metalloproteinase-9 expression by inhibiting Sp1 transcriptional activity in colorectal cancer cells. Chem Biol Interact. 2009;181(3):440–6.
Article
PubMed
CAS
Google Scholar
Guo J, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Li X, Xi S. Repression of YAP by NCTD disrupts NSCLC progression. Oncotarget. 2017;8(2):2307–19.
Article
PubMed
Google Scholar
Peng C, Li Z, Niu Z, Niu W, Xu Z, Gao H, Niu W, Wang J, He Z, Gao C, et al. Norcantharidin suppresses colon cancer cell epithelial-mesenchymal transition by inhibiting the alphavbeta6-ERK-Ets1 signaling pathway. Sci Rep. 2016;6:20500.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Ji Q, Liu X, Chen X, Chen Z, Qiu Y, Sun J, Cai J, Zhu H, Li Q. Norcantharidin inhibits tumor angiogenesis via blocking VEGFR2/MEK/ERK signaling pathways. Cancer Sci. 2013;104(5):604–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang JT, Fan YZ, Chen CQ, Zhao ZM, Sun W. Norcantharidin: a potential antiangiogenic agent for gallbladder cancers in vitro and in vivo. Int J Oncol. 2012;40(5):1501–14.
PubMed
CAS
Google Scholar
Wang Z, You D, Lu M, He Y, Yan S. Inhibitory effect of norcantharidin on melanoma tumor growth and vasculogenic mimicry by suppressing MMP-2 expression. Oncol Lett. 2017;13(3):1660–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Sun W, Zhang WZ, Ge CY, Zhang JT, Liu ZY, Fan YZ. Inhibition of tumor vasculogenic mimicry and prolongation of host survival in highly aggressive gallbladder cancers by norcantharidin via blocking the ephrin type a receptor 2/focal adhesion kinase/paxillin signaling pathway. PLoS ONE. 2014;9(5):e96982.
Article
PubMed
PubMed Central
Google Scholar
Zhu W, Sun W, Zhang JT, Liu ZY, Li XP, Fan YZ. Norcantharidin enhances TIMP2 antivasculogenic mimicry activity for human gallbladder cancers through downregulating MMP2 and MT1MMP. Int J Oncol. 2015;46(2):627–40.
Article
PubMed
CAS
Google Scholar
Li XP, Jing W, Sun JJ, Liu ZY, Zhang JT, Sun W, Zhu W, Fan YZ. A potential small-molecule synthetic antilymphangiogenic agent norcantharidin inhibits tumor growth and lymphangiogenesis of human colonic adenocarcinomas through blocking VEGF-A,-C,-D/VEGFR-2,-3 “multi-points priming” mechanisms in vitro and in vivo. BMC Cancer. 2015;15:527.
Article
PubMed
PubMed Central
Google Scholar
Chen YJ, Kuo CD, Chen SH, Chen WJ, Huang WC, Chao KS, Liao HF. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating sonic hedgehog signaling in human breast cancer cells. PLoS ONE. 2012;7(5):e37006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang S, Li G, Ma X, Wang Y, Liu G, Feng L, Zhao Y, Zhang G, Wu Y, Ye X, et al. Norcantharidin enhances ABT-737-induced apoptosis in hepatocellular carcinoma cells by transcriptional repression of Mcl-1. Cell Signal. 2012;24(9):1803–9.
Article
PubMed
CAS
Google Scholar
Wu H, Fan F, Liu Z, Shen C, Wang A, Lu Y. Norcantharidin combined with EGFR-TKIs overcomes HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via inhibition of Met/PI3k/Akt pathway. Cancer Chemother Pharmacol. 2015;76(2):307–15.
Article
PubMed
CAS
Google Scholar
Mo L, Zhang X, Shi X, Wei L, Zheng D, Li H, Gao J, Li J, Hu Z. Norcantharidin enhances antitumor immunity of GM-CSF prostate cancer cells vaccine by inducing apoptosis of regulatory T cells. Cancer Sci. 2018;109(7):2109–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao Q, Qian Y, Li R, Tan B, Han H, Liu M, Qian M, Du B. Norcantharidin facilitates LPS-mediated immune responses by up-regulation of AKT/NF-kappaB signaling in macrophages. PLoS ONE. 2012;7(9):e44956.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Y, Chi J, Liu W, Han B. Study on chronic toxicity of chitosan-based norcantharidin sustained-release drug delivery system. Chin J Mar Drugs. 2017;36(5):33–41.
Google Scholar
Fan X, Yu R, Dong R, Luo G, Ma Z. Toxicity of cantharidin and norcantharidin in mice. Chin J Exp Tradit Med Formulae. 2017;23(15):118–23.
Google Scholar
Martinez-Razo G, Dominguez-Lopez ML, de la Rosa JM, Fabila-Bustos DA, Reyes-Maldonado E, Conde-Vazquez E, Vega-Lopez A. Norcantharidin toxicity profile: an in vivo murine study. Naunyn Schmiedebergs Arch Pharmacol. 2022.
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58.
Article
PubMed
CAS
Google Scholar
Park CG, Hartl CA, Schmid D, Carmona EM, Kim HJ, Goldberg MS. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10(433):eaar1916.
Article
PubMed
Google Scholar
Wang H, Jin Y, Tan Y, Zhu H, Huo W, Niu P, Li Z, Zhang J, Liang XJ, Yang X. Photo-responsive hydrogel facilitates nutrition deprivation by an ambidextrous approach for preventing cancer recurrence and metastasis. Biomaterials. 2021;275:120992.
Article
PubMed
CAS
Google Scholar
Tan B, Wu Y, Wu Y, Shi K, Han R, Li Y, Qian Z, Liao J. Curcumin-microsphere/IR820 hybrid bifunctional hydrogels for in situ osteosarcoma chemo-co-thermal therapy and bone reconstruction. ACS Appl Mater Interfaces. 2021;13(27):31542–53.
Article
PubMed
CAS
Google Scholar
Zhang J, Chen C, Li A, Jing W, Sun P, Huang X, Liu Y, Zhang S, Du W, Zhang R, et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat Nanotechnol. 2021;16(5):538–48.
Article
PubMed
CAS
Google Scholar
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release. 2020;324:505–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020;3(1):127–44.
Article
Google Scholar
Yan X, Sun T, Song Y, Peng W, Xu Y, Luo G, Li M, Chen S, Fang WW, Dong L, et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary therapy of hepatocellular carcinoma. Nano Lett. 2022;22(6):2251–60.
Article
PubMed
CAS
Google Scholar
Guo R, Zhang P, Liu J, Xie R, Wang L, Cai L, Qiu X, Sang H. NIR responsive injectable nanocomposite thermogel system against osteosarcoma recurrence. Macromol Rapid Commun. 2022;43(17):e2200255.
Article
PubMed
Google Scholar
Zhang Y, Tian S, Huang L, Li Y, Lu Y, Li H, Chen G, Meng F, Liu GL, Yang X, et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment. Nat Commun. 2022;13(1):4553.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao F, Xie W, Miao Y, Wang D, Guo Z, Ghosal A, Li Y, Wei Y, Feng SS, Zhao L, et al. Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention. Adv Healthc Mater. 2019;8(14):e1900203.
Article
PubMed
Google Scholar
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional polymeric nanogels for biomedical applications. Gels. 2021;7(4):228.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang C, Sun W, Wang Y, Xu F, Qu J, Xia J, Shen M, Shi X. Gd-/CuS-loaded functional nanogels for MR/PA imaging-guided tumor-targeted photothermal therapy. ACS Appl Mater Interfaces. 2020;12(8):9107–17.
Article
PubMed
CAS
Google Scholar
Chen Z, Chen R, Zhao C, Quan Z, Zhu H, Wang L, Bu Q, He Y, He H. A novel medically imageable intelligent cellulose nanofibril-based injectable hydrogel for the chemo-photothermal therapy of tumors. Chem Eng J. 2022;431:133255.
Article
CAS
Google Scholar
Zhu Y, Jia J, Zhao G, Huang X, Wang L, Zhang Y, Zhang L, Konduru N, Xie J, Yu R, et al. Multi-responsive nanofibers composite gel for local drug delivery to inhibit recurrence of glioma after operation. J Nanobiotechnol. 2021;19(1):198.
Article
CAS
Google Scholar
Wu Y, Yao Y, Zhang J, Gui H, Liu J, Liu J. Tumor-targeted injectable double-network hydrogel for prevention of breast cancer recurrence and wound infection via synergistic photothermal and brachytherapy. Adv Sci (Weinh). 2022;9(24):e2200681.
Article
PubMed
Google Scholar
Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14(1):89–97.
Article
PubMed
CAS
Google Scholar
Niu Y, Wu D, Dong W, Tang X, Cai C. Research progress on new preparation of norcantharidin. Chin Pharm J. 2013;48(9):663–7.
CAS
Google Scholar