Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerda J, Chawla LS. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14:607–25.
Article
CAS
PubMed
Google Scholar
Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL. Acute Kidney Injury Advisory Group of the American Society of N: World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.
Article
PubMed
PubMed Central
Google Scholar
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Workgroup A. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.
Article
PubMed
PubMed Central
Google Scholar
Ostermann M, Bellomo R, Burdmann EA, Doi K, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020;98:294–309.
Article
PubMed
PubMed Central
Google Scholar
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:439-442.
Article
Google Scholar
Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55:1074–89.
Article
CAS
PubMed
Google Scholar
Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori K, Gigllo J, et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med. 2008;148:810-U821.
Article
PubMed
PubMed Central
Google Scholar
Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S, Kanmura Y. Comparison of three early biomarkers for acute kidney injury after cardiac surgery under cardiopulmonary bypass. J Intensive Care. 2016;4:41–41.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Zhao Y, Li ZQ, Chen Q, Luo CQ, Su JX, Wang YM. Biomarkers for detecting and improving AKI after liver transplantation: from diagnosis to treatment. Transplant Rev. 2021;35:100612.
Article
Google Scholar
MacLeod A. NCEPOD report on acute kidney injury-must do better. Lancet. 2009;374:1405–6.
Article
PubMed
Google Scholar
Williams RM, Jaimes EA, Heller DA. Nanomedicines for kidney diseases. Kidney Int. 2016;90:740–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083.
Article
CAS
PubMed
Google Scholar
Zheng C, Li M, Ding J. Challenges and opportunities of nanomedicines in clinical translation. BIO Integr. 2021;2:57–60.
Article
Google Scholar
Wang LF, Zhang YJ, Li YY, Chen JH, Lin WQ. Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res. 2021;14:920–33.
Article
CAS
Google Scholar
Bellomo R, May C, Wan L. Acute renal failure and sepsis. N Engl J Med. 2004;351:2347–9 (Author reply 2347-2349).
Article
CAS
PubMed
Google Scholar
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.
Article
CAS
PubMed
Google Scholar
Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282:2871–9.
Article
CAS
PubMed
Google Scholar
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2019;38:e101812.
Article
PubMed
PubMed Central
Google Scholar
Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.
Article
CAS
PubMed
Google Scholar
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007;19:1807–19.
Article
CAS
PubMed
Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.
Article
CAS
PubMed
Google Scholar
Hrelia S, Angeloni C. New mechanisms of action of natural antioxidants in health and disease II. Antioxidants. 2021;10:1200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.
Article
CAS
PubMed
Google Scholar
Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44:275–95.
Article
CAS
PubMed
Google Scholar
Frei B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med. 1994;97:5S-13S.
Article
CAS
PubMed
Google Scholar
Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T, Kudo M. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis. 2013;31:459–66.
Article
PubMed
Google Scholar
Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair. 2014;15:11–20.
Article
CAS
PubMed
Google Scholar
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 2013;10:3886–907.
Article
PubMed
PubMed Central
Google Scholar
Juncos R, Garvin JL. Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb. Am J Physiol-Renal Physiol. 2005;288:F982–7.
Article
CAS
PubMed
Google Scholar
Cao CH, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Intrinsic nitric oxide and superoxide production regulates descending vasa recta contraction. Am J Physiol-Renal Physiol. 2010;299:F1056–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauser CJ. Activated polymorphonuclear leukocytes enhance production of leukocyte microparticles with increased adhesion molecules in patients with sepsis-Editorial comment. J Trauma-Injury Infect Crit Care. 2002;52:448–448.
Google Scholar
Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26.
Article
PubMed
PubMed Central
Google Scholar
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121:4210–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2005;288:F91-97.
Article
CAS
PubMed
Google Scholar
Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Invest. 2011;91:170–80.
Article
CAS
PubMed
Google Scholar
Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int. 2004;66:496–9.
Article
PubMed
Google Scholar
Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996;97:1056–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci USA. 1994;91:812–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singbartl K, Green SA, Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 2000;14:48–54.
Article
CAS
PubMed
Google Scholar
Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol. 2000;20:4–19.
CAS
PubMed
Google Scholar
Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils–a key component of ischemia-reperfusion injury. Shock. 2013;40:463–70.
Article
CAS
PubMed
Google Scholar
Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury. Nephron Exp Nephrol. 2008;109:e102-107.
Article
CAS
PubMed
Google Scholar
Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97:738–47.
Article
CAS
PubMed
Google Scholar
Korkmaz A, Kolankaya D. The protective effects of ascorbic acid against renal ischemia-reperfusion injury in male rats. Ren Fail. 2009;31:36–43.
Article
CAS
PubMed
Google Scholar
Dosluoglu HH, Aktan AO, Yegen C, Okboy N, Yalcm AS, Yahn R, Ercan S. The cytoprotective effects of verapamil and iloprost (ZK 36374) on ischemia/reperfusion injury of kidneys. Transpl Int. 1993;6:138–42.
Article
CAS
PubMed
Google Scholar
Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34:384–99.
Article
CAS
PubMed
Google Scholar
Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 2008;74:1526–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol. 2010;30:268–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial function and disturbances in the septic kidney. Semin Nephrol. 2015;35:108–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol. 1985;2016(120):226–35.
Google Scholar
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.
Article
CAS
PubMed
Google Scholar
Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D, Brody EN. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment? Redox Rep. 2015;20:193–7.
Article
PubMed
PubMed Central
Google Scholar
Nagar H, Piao S, Kim CS. Role of mitochondrial oxidative stress in sepsis. Acute Crit Care. 2018;33:65–72.
Article
PubMed
PubMed Central
Google Scholar
Sureshbabu A, Patino E, Ma KC, Laursen K, Finkelsztein EJ, Akchurin O, Muthukumar T, Ryter SW, Gudas L, Choi AMK, Choi ME. RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight. 2018;3:e98411.
Article
PubMed
PubMed Central
Google Scholar
Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F, Penaloza HF, Soong G, Bueno S, Parker D, Prince A. Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signaling. Cell Rep. 2016;16:2219–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity. 2011;35:908–18.
Article
CAS
PubMed
Google Scholar
Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet. 2002;360:219–23.
Article
CAS
Google Scholar
Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187:509–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, Silachev DN, Skulachev VP, Zorov DB. Mitochondrial damage and mitochondria-targeted antioxidant protection in LPS-induced acute kidney injury. Antioxidants. 2019;8:176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan S, Akey CW. Apoptosome structure, assembly, and procaspase activation. Structure. 2013;21:501–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 2002;84:203–14.
Article
CAS
PubMed
Google Scholar
van der Slikke EC, Star BS, van Meurs M, Henning RH, Moser J, Bouma HR. Sepsis is associated with mitochondrial DNA damage and a reduced mitochondrial mass in the kidney of patients with sepsis-AKI. Critical Care. 2021;25:36–36.
Article
PubMed
PubMed Central
Google Scholar
Ding Y, Zheng Y, Huang J, Peng W, Chen X, Kang X, Zeng Q. UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol. 2019;71:336–49.
Article
CAS
PubMed
Google Scholar
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology. 2011;26:192–205.
Article
CAS
PubMed
Google Scholar
Devarajan P. Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr. 2005;17:193–9.
Article
PubMed
Google Scholar
Kosieradzki M, Rowinski W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40:3279–88.
Article
CAS
PubMed
Google Scholar
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4:552–65.
Article
CAS
PubMed
Google Scholar
Basile DP, Donohoe DL, Roethe K, Mattson DL. Chronic renal hypoxia after acute ischemic injury: effects of l-arginine on hypoxia and secondary damage. Am J Physiol-Renal Physiol. 2003;284:F338–48.
Article
CAS
PubMed
Google Scholar
Fu Q, Colgan SP, Shelley CS. Hypoxia: the force that drives chronic kidney disease. Clin Med Res. 2016;14:15–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirakawa Y, Tanaka T, Nangaku M. Renal hypoxia in CKD pathophysiology and detecting methods. Front Physiol. 2017;8:99.
Article
PubMed
PubMed Central
Google Scholar
Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest. 2014;124:2396–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Yu X, Zhang Y, Ding G, Zhu C, Huang S, Jia Z, Zhang A. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury. Clin Sci. 2018;132:825–38.
Article
CAS
Google Scholar
Fahling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C. Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI. J Am Soc Nephrol. 2013;24:1806–19.
Article
PubMed
PubMed Central
Google Scholar
Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 2017;36:252–9.
Article
CAS
PubMed
Google Scholar
Lacher SE, Levings DC, Freeman S, Slattery M. Identification of a functional antioxidant response element at the HIF1A locus. Redox Biol. 2018;19:401–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: problems solved? Redox Biol. 2015;6:372–85.
Article
PubMed
PubMed Central
Google Scholar
Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2011;6(6):165–92.
Article
CAS
PubMed
Google Scholar
Beck I, Weinmann R, Caro J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993;82:704–11.
Article
CAS
PubMed
Google Scholar
Zou AP, Cowley AW Jr. Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand. 2003;179:233–41.
Article
CAS
PubMed
Google Scholar
O’Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol-Renal Physiol. 2006;290:F688–94.
Article
CAS
PubMed
Google Scholar
Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182:1683–93.
Article
CAS
PubMed
Google Scholar
Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117:3810–20.
CAS
PubMed
PubMed Central
Google Scholar
Tanaka S, Tanaka T, Nangaku M. CALL FOR PAPERS Renal hypoxia hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol-Renal Physiol. 2014;307:F1187–95.
Article
CAS
PubMed
Google Scholar
Ullah MM, Basile DP. Role of renal hypoxia in the progression from acute kidney injury to chronic kidney disease. Semin Nephrol. 2019;39:567–80.
Article
PubMed
PubMed Central
Google Scholar
Evans RG, Ince C, Joles JA, Smith DW, May CN, O’Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.
Article
CAS
PubMed
Google Scholar
Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol. 2008;295:F1259-1270.
Article
CAS
PubMed
Google Scholar
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.
Article
CAS
PubMed
Google Scholar
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.
Article
CAS
PubMed
Google Scholar
Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem. 2018;23:1185–204.
Article
CAS
PubMed
Google Scholar
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. 2011;19:129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen HL, Liu ZM, Jiang O, Zhang JY, Huang J, You XR, Liang ZQ, Tao W, Wu J. Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and cancer therapy. Giant. 2021;8:100073.
Article
CAS
Google Scholar
Dai YJ, Ding YM, Li LN. Nanozymes for regulation of reactive oxygen species and disease therapy. Chin Chem Lett. 2021;32:2715–28.
Article
CAS
Google Scholar
Liu Y, Li D, Ding JX, Chen XS. Controlled synthesis of polypeptides. Chin Chem Lett. 2020;31:3001–14.
Article
CAS
Google Scholar
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng L, Jiang DW, Kamkaew A, Valdovinos HF, Im HJ, Feng LZ, England CG, Goel S, Barnhart TE, Liu Z, Cai WB. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv Funct Mater. 2017;27:1702928.
Article
PubMed
PubMed Central
Google Scholar
Zhang DY, Younis MR, Liu HK, Lei S, Wan YL, Qu JL, Lin J, Huang P. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/ nitrogen species scavengers for acute kidney injury management. Biomaterials. 2021;271:120706.
Article
CAS
PubMed
Google Scholar
Weng QJ, Sun H, Fang CY, Xia F, Liao HW, Lee JY, Wang JC, Xie A, Ren JF, Guo X, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun. 2021;12:1436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Jin FY, Liu D, Shu GF, Wang XJ, Qi J, Sun MC, Yang P, Jiang SP, Ying XY, Du YZ. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10:2342–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.
Article
CAS
PubMed
Google Scholar
Huang WC, Lyu LM, Yang YC, Huang MH. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J Am Chem Soc. 2012;134:1261–7.
Article
CAS
PubMed
Google Scholar
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11:4955–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng JL, Chen JH, Kang JH, Yu Y, Yan N, Fu XZ, Sun R, Wong CP. Octahedral Cu2O@Co(OH)(2) nanocages with hierarchical flake-like walls and yolk-shell structures for enhanced electrocatalytic activity. ChemCatChem. 2019;11:2520–5.
Article
CAS
Google Scholar
Liu TF, Xiao BW, Xiang F, Tan JL, Chen Z, Zhang XR, Wu CZ, Mao ZW, Luo GX, Chen XY, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11:2788.
Huang CL, Weng WL, Huang YS, Liao CN. Enhanced photolysis stability of Cu2O grown on Cu nanowires with nanoscale twin boundaries. Nanoscale. 2019;11:13709–13.
Article
CAS
PubMed
Google Scholar
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang XX, Silva R, Zou XX, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and applications in review catalysis. Chem Rev. 2016;116:3722–811.
Article
CAS
PubMed
Google Scholar
Liu Z, Xie LN, Qiu KQ, Liao XX, Rees TW, Zhao ZZ, Ji LN, Chao H. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like activity for the prevention of acute kidney injury. ACS Appl Mater Interfaces. 2020;12:31205–16.
Article
CAS
PubMed
Google Scholar
Ni DL, Jiang DW, Kutyreff CJ, Lai JH, Yan YJ, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 2018;9:5421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats. Exp Toxicol Pathol. 2017;69:231–40.
Article
CAS
PubMed
Google Scholar
El-Sayed SM, El-Naggar ME, Hussein J, Medhat D, El-Banna M. Effect of Ficus carica L. leaves extract loaded gold nanoparticles against cisplatin-induced acute kidney injury. Colloids Surf B Biointerfaces. 2019;184:110465.
Article
CAS
PubMed
Google Scholar
Gao J, Liu YF, Jiang B, Cao WM, Kan YS, Chen W, Ding M, Zhang GY, Zhang BW, Xi K, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney injury via preferential renal accumulation and antioxidant capacity. ACS Appl Mater Interfaces. 2020;12:31745–56.
Article
CAS
PubMed
Google Scholar
Wang H, Yu DQ, Fang J, Zhou Y, Li DW, Liu Z, Ren JS, Qu XG. Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chem Sci. 2020;11:12721–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alidori S, Akhavein N, Thorek DLJ, Behling K, Romin Y, Queen D, Beattie BJ, Manova-Todorova K, Bergkvist M, Scheinberg DA, McDevitt MR. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci Transl Med. 2016;8:331ra39.
Article
PubMed
PubMed Central
Google Scholar
Li F, Li TY, Sun CX, Xia JH, Jiao Y, Xu HP. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem-Int Ed. 2017;56:9910–4.
Article
CAS
Google Scholar
Zhao SJ, Lan MH, Zhu XY, Xue HT, Ng TW, Meng XM, Lee CS, Wang PF, Zhang WJ. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7:17054–60.
Article
CAS
PubMed
Google Scholar
Chen HM, Qiu YW, Ding DD, Lin HR, Sun WJ, Wang GD, Huang WC, Zhang WZ, Lee D, Liu G, et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic therapy. Adv Mater. 2018;30:1802748.
Article
Google Scholar
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.
Article
CAS
PubMed
Google Scholar
Rosenkrans ZT, Sun TW, Jiang DW, Chen WY, Barnhart TE, Zhang ZY, Ferreira CA, Wang XD, Engle JW, Huang P, Cai WB. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney injury management. Adv Sci. 2020;7:2000420.
Article
CAS
Google Scholar
Hou DZ, Xie CS, Huang KJ, Zhu CH. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003;24:1781–5.
Article
CAS
PubMed
Google Scholar
Thukral DK, Dumoga S, Mishra AK. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv. 2014;11:771–91.
Article
CAS
PubMed
Google Scholar
Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23:1434–43.
Article
CAS
PubMed
Google Scholar
Pawar H, Surapaneni SK, Tikoo K, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: in vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv. 2016;23:1453–68.
Article
CAS
PubMed
Google Scholar
Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int J Nanomed. 2017;12:955–68.
Article
CAS
Google Scholar
Hu JB, Song GL, Liu D, Li SJ, Wu JH, Kang XQ, Qi J, Jin FY, Wang XJ, Xu XL, et al. Sialic acid-modified solid lipid nanoparticles as vascular endothelium-targeting carriers for ischemia-reperfusion-induced acute renal injury. Drug Deliv. 2017;24:1856–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Zhang H, Yin N, Zhang Y, Gou J, Yin T, He H, Ding H, Zhang Y, Tang X. Sialic acid-modified dexamethasone lipid calcium phosphate gel core nanoparticles for target treatment of kidney injury. Biomater Sci. 2020;8:3871–84.
Article
CAS
PubMed
Google Scholar
Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal. 2015;8:re3.
Article
PubMed
Google Scholar
Zhang S, Sun H, Kong W, Zhang B. Functional role of microRNA-500a-3P-loaded liposomes in the treatment of cisplatin-induced AKI. IET Nanobiotechnol. 2020;14:465–9.
Article
PubMed
PubMed Central
Google Scholar
Yoshitomi T, Hirayama A, Nagasaki Y. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials. 2011;32:8021–8.
Article
CAS
PubMed
Google Scholar
Liu D, Shu GF, Jin FY, Qi J, Xu XL, Du Y, Yu H, Wang J, Sun MC, You YC, et al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci Adv. 2020;6:eabb7422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LY, You XR, Dai CL, Fang YF, Wu J. Development of poly(p-coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomater Sci. 2022;10:2263–74.
Article
CAS
PubMed
Google Scholar
You XR, Wang LY, Wang L, Wu J. Rebirth of aspirin synthesis by-product: prickly poly(salicylic acid) nanoparticles as self-anticancer drug carrier. Adv Funct Mater. 2021;31:2100805.
Article
CAS
Google Scholar
Wang YQ, Li CJ, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chin Chem Lett. 2020;31:275–80.
Article
Google Scholar
Liu D, Jin FY, Shu GF, Xu XL, Qi J, Kang XQ, Yu H, Lu KJ, Jiang SP, Han F, et al. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials. 2019;211:57–67.
Article
CAS
PubMed
Google Scholar
Rampanelli E, Dessing MC, Claessen N, Teske GJD, Joosten SPJ, Pals ST, Leemans JC, Florquin S. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction. PLoS ONE. 2013;8:e84479.
Article
PubMed
PubMed Central
Google Scholar
Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int. 2007;72:430–41.
Article
CAS
PubMed
Google Scholar
Lewington AJP, Padanilam BJ, Martin DR, Hammerman MR. Expression of CD44 in kidney after acute ischemic injury in rats. Am J Physiol-Regul Integr Comp Physiol. 2000;278:R247–54.
Article
CAS
PubMed
Google Scholar
Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted sialic acid-peg-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney injury. Theranostics. 2017;7:2204–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, Smithies O. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci USA. 2017;114:2958–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Lin TS, Chen W, Cao WM, Zhang CW, Wang TW, Ding M, Zhao S, Wei H, Guo HQ, Zhao XZ. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials. 2019;219:119368.
Article
CAS
PubMed
Google Scholar
Nilsson L, Madsen K, Topcu SO, Jensen BL, Frokiaer J, Norregaard R. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol. 2012;302:F1430-1439.
Article
CAS
PubMed
Google Scholar
Norregaard R, Jensen BL, Topcu SO, Nielsen SS, Walter S, Djurhuus JC, Frokiaer J. Cyclooxygenase type 2 is increased in obstructed rat and human ureter and contributes to pelvic pressure increase after obstruction. Kidney Int. 2006;70:872–81.
Article
CAS
PubMed
Google Scholar
Norregaard R, Jensen BL, Topcu SO, Wang GX, Schweer H, Nielsen S, Frokiaer J. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am J Physiol-Regul Integr Comp Physiol. 2010;298:R1017–25.
Article
PubMed
PubMed Central
Google Scholar
Miyajima A, Ito K, Asano T, Seta K, Ueda A, Hayakawa M. Does cyclooxygenase-2 inhibitor prevent renal tissue damage in unilateral ureteral obstruction? J Urol. 2001;166:1124–9.
Article
CAS
PubMed
Google Scholar
Yang CX, Nilsson L, Cheema MU, Wang Y, Frokiaer J, Gao S, Kjems J, Norregaard R. Chitosan/siRNA nanoparticles targeting cyclooxygenase type 2 attenuate unilateral ureteral obstruction-induced kidney injury in mice. Theranostics. 2015;5:110–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang DY, Liu HK, He T, Younis MR, Tu TH, Yang C, Zhang J, Lin J, Qu JL, Huang P. Biodegradable self-assembled ultrasmall nanodots as reactive oxygen/nitrogen species scavengers for theranostic application in acute kidney injury. Small. 2021;17:119368.
Google Scholar
Liu S, Gao X, Wang Y, Wang J, Qi X, Dong K, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: Fabrication, characterization and mechanism. Int J Pharm. 2022;626:122161.
Article
CAS
PubMed
Google Scholar
Hou JJ, Wang H, Ge ZL, Zuo TT, Chen Q, Liu XG, Mou S, Fan CH, Xie Y, Wang LH. Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20:1447–54.
Article
CAS
PubMed
Google Scholar
Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke K, Yang MB, Su BH, Yang W. Redox-mediated artificial non-enzymatic antioxidant MXene nanoplatforms for acute kidney injury alleviation. Adv Sci. 2021;8:2101498.
Article
CAS
Google Scholar
Foroutan T, Nafar M, Motamedi E. Intraperitoneal injection of graphene oxide nanoparticle accelerates stem cell therapy effects on acute kidney injury. Stem Cells Cloning-Adv Appl. 2020;13:21–32.
Google Scholar
Fu J, Chang L. Fabrication of fasudil hydrochloride modified graphene oxide biocomposites and its defensive effect acute renal injury in septicopyemia rats. J Photochem Photobiol B-Biol. 2018;186:125–30.
Article
CAS
Google Scholar
Lieber CM. One-dimensional nanostructures: chemistry, physics and applications. Solid State Commun. 1998;107:607–16.
Article
CAS
Google Scholar
Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH, Huang H, Zhang F, Ge YQ, Zhang H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt Express. 2018;26:22750–60.
Article
CAS
PubMed
Google Scholar
Song YF, Liang ZM, Jiang XT, Chen YX, Li ZJ, Lu L, Ge YQ, Wang K, Zheng JL, Lu SB, et al. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials. 2017;4:045010.
Article
Google Scholar
Yang J, Su T, Zou H, Yang G, Ding J, Chen X. Spatiotemporally targeted polypeptide nanoantidotes improve chemotherapy tolerance of cisplatin. Angew Chem Int Ed Engl. 2022;e202211136.
Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos K, Pizzorusso T. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA. 2011;108:10952–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R Jr, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G. In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1 alpha) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2009;2:279–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR. Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat Rev Clin Oncol. 2010;7:266–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat Nanotechnol. 2013;8:763–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE. 2007;2:e907.
Article
PubMed
PubMed Central
Google Scholar
Liu JL, Hui D, Lau D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications. Nanotechnol Rev. 2022;11:770–92.
Article
CAS
Google Scholar
Wang YM, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin Chem Lett. 2020;31:937–46.
Article
CAS
Google Scholar
Hao JL, Wang WJ, Zhao JW, Che HL, Chen L, Sui X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin Chem Lett. 2022;33:2291–300.
Article
CAS
Google Scholar
Ding J, Xiao H, Chen X. Advanced biosafety materials for prevention and theranostics of biosafety issues. Biosaf Health. 2022;4:59–60.
Article
PubMed
PubMed Central
Google Scholar
Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD, Wu H, Feng DL, Chen XH, Zhang YB. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–7.
Article
CAS
PubMed
Google Scholar
Shao JD, Xie HH, Huang H, Li ZB, Sun ZB, Xu YH, Xiao QL, Yu XF, Zhao YT, Zhang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun. 2016;7:3923.
Article
Google Scholar
Zhou QH, Chen Q, Tong YL, Wang JL. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew Chem-Int Ed. 2016;55:11437–41.
Article
CAS
Google Scholar
Huang K, Li ZJ, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47:5109–24.
Article
CAS
PubMed
Google Scholar
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater. 2019;8:1801137.
Article
Google Scholar
Lin H, Chen Y, Shi JL. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci. 2018;5:1800518.
Article
Google Scholar
Zhang CFJ, Pinilla S, McEyoy N, Cullen CP, Anasori B, Long E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29:4848–56.
Article
CAS
Google Scholar
Jastrzebska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmyslowska A, Olszyna A. In vitro studies on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.
Article
CAS
PubMed
Google Scholar
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.
Article
CAS
PubMed
Google Scholar
Kim J, Choi KS, Kim Y, Lim KT, Seonwoo H, Park Y, Kim DH, Choung PH, Cho CS, Kim SY, et al. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J Biomed Mater Res Part A. 2013;101:3520–30.
Article
Google Scholar
Bai H, Li C, Wang XL, Shi GQ. A pH-sensitive graphene oxide composite hydrogel. Chem Commun. 2010;46:2376–8.
Article
CAS
Google Scholar