Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6:1940–8. https://doi.org/10.1002/sctm.17-0148.
Article
Google Scholar
Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell. 2020;27:523–31.
Article
CAS
Google Scholar
Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8–8.
Article
CAS
Google Scholar
Saha K, Jaenisch R. Technical Challenges in Using Human Induced Pluripotent Stem Cells to Model Disease. Cell Stem Cell. 2009;5:584–95.
Article
CAS
Google Scholar
Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47-52.
Article
CAS
Google Scholar
Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci. 2000;97:5031–3. https://doi.org/10.1073/pnas.97.10.5031.
Article
CAS
Google Scholar
Zeng Z, Miao N, Sun T. Revealing cellular and molecular complexity of the central nervous system using single cell sequencing. Stem Cell Res Ther. 2018;9:234. https://doi.org/10.1186/s13287-018-0985-z.
Article
CAS
Google Scholar
Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem. 2017;1:0063.
Article
CAS
Google Scholar
Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. High throughput methods applied in biomaterial development and discovery. Biomaterials. 2010;31:187–98. https://doi.org/10.1016/j.biomaterials.2009.09.037.
Article
CAS
Google Scholar
Kim HD, Lee EA, Choi YH, An YH, Koh RH, Kim SL, et al. High throughput approaches for controlled stem cell differentiation. Acta Biomater. 2016;34:21–9.
Article
CAS
Google Scholar
Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol. 2009;27:342–9.
Article
CAS
Google Scholar
Park JW, Fu S, Huang B, Xu R-H. Alternative splicing in mesenchymal stem cell differentiation. Stem Cells. 2020. https://doi.org/10.1002/stem.3248.
Article
Google Scholar
Xia P, Wang X, Qu Y, Lin Q, Cheng K, Gao M, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Res Ther. 2017;8:281. https://doi.org/10.1186/s13287-017-0733-9.
Article
CAS
Google Scholar
George S, Hamblin MR, Abrahamse H. Differentiation of mesenchymal stem cells to neuroglia: in the context of cell signalling. Stem Cell Rev Rep. 2019;15:814–26. https://doi.org/10.1007/s12015-019-09917-z.
Article
CAS
Google Scholar
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol. 2014;32:245–53.
Article
CAS
Google Scholar
Song Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711. https://doi.org/10.1002/smll.200701029.
Article
CAS
Google Scholar
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic generation of nanomaterials for biomedical applications. Small. 2020;16:1–19.
Google Scholar
Elvira KS, i Solvas XC, Wootton RCR, DeMello AJ. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem. 2013;5:905–15.
Article
CAS
Google Scholar
Liao Z, Wang J, Zhang P, Zhang Y, Miao Y, Gao S, et al. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens Bioelectron. 2018;121:272–80.
Article
CAS
Google Scholar
Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: a review. Sensors. 2020;20:4236.
Article
CAS
Google Scholar
Yang K, Park HJ, Han S, Lee J, Ko E, Kim J, et al. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials. 2015;63:177–88. https://doi.org/10.1016/j.biomaterials.2015.06.011.
Article
CAS
Google Scholar
Du G, Fang Q, den Toonder JMJ. Microfluidics for cell-based high throughput screening platforms-A review. Anal Chim Acta. 2016;903:36–50. https://doi.org/10.1016/j.aca.2015.11.023.
Article
CAS
Google Scholar
Giridharan V, Yun Y, Hajdu P, Conforti L, Collins B, Jang Y, et al. Microfluidic platforms for evaluation of nanobiomaterials: A review. J Nanomater. 2012;2012:14.
Article
Google Scholar
Lee JM, Zhang M, Yeong W. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluidics. 2016;20:1–15.
Article
Google Scholar
Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. Biomol Detect Quantif. 2015;4:22–32. https://doi.org/10.1016/j.bdq.2015.04.003.
Article
CAS
Google Scholar
Bellmann J, Goswami RY, Girardo S, Rein N, Hosseinzadeh Z, Hicks MR, et al. A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials. 2019;225:119537. https://doi.org/10.1016/j.biomaterials.2019.119537.
Article
CAS
Google Scholar
Ko E, Tran V-K, Son SE, Hur W, Choi H, Seong GH. Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sensors Actuators B Chem. 2019;294:166–76.
Article
CAS
Google Scholar
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials. 2020;226:119522. https://doi.org/10.1016/j.biomaterials.2019.119522.
Article
CAS
Google Scholar
Gutierrez E, Groisman A. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device. Anal Chem. 2007;79:2249–58. https://doi.org/10.1021/ac061703n.
Article
CAS
Google Scholar
Qin D, Xia Y, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.
Article
CAS
Google Scholar
Mohamed MGA, Kumar H, Wang Z, Martin N, Mills B, Kim K. Rapid and inexpensive fabrication of multi-depth microfluidic device using high-resolution LCD stereolithographic 3D printing. J Manuf Mater Process. 2019;3:1–11.
CAS
Google Scholar
Mukherjee P, Nebuloni F, Gao H, Zhou J, Papautsky I. Rapid prototyping of soft lithography masters for microfluidic devices using dry film photoresist in a non-cleanroom setting. Micromachines. 2019;10:192.
Article
Google Scholar
Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip. 2014;14:3790.
Article
CAS
Google Scholar
Nilghaz A, Guan L, Tan W, Shen W. Advances of paper-based microfluidics for diagnostics—the original motivation and current status. ACS Sensors. 2016;1:1382–93. https://doi.org/10.1021/acssensors.6b00578.
Article
CAS
Google Scholar
Moreno-Rivas O, Hernández-Velázquez D, Piazza V, Marquez S. Rapid prototyping of microfluidic devices by SL 3D printing and their biocompatibility study for cell culturing. Mater Today Proc. 2019;13:436–45. https://doi.org/10.1016/j.matpr.2019.03.189.
Article
CAS
Google Scholar
Lee J-Y, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today. 2017;7:120–33.
Article
Google Scholar
Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip R Soc Chem. 2016;16:1993–2013.
Article
CAS
Google Scholar
Vasilescu SA, Bazaz SR, Jin D, Shimoni O, Warkiani ME. 3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation. Appl Mater Today. 2020;20:100726. https://doi.org/10.1016/j.apmt.2020.100726.
Article
Google Scholar
Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509:255–63. https://doi.org/10.1016/j.ijpharm.2016.05.036.
Article
CAS
Google Scholar
Zhou Z, Ruiz Cantu L, Chen X, Alexander MR, Roberts CJ, Hague R, et al. High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Addit Manuf. 2019;29:100792. https://doi.org/10.1016/j.addma.2019.100792.
Article
CAS
Google Scholar
Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E. Fused deposition modeling 3D printing for (Bio)analytical device fabrication: procedures, materials, and applications. Anal Chem. 2017;89:7053–61.
Article
CAS
Google Scholar
Hwang Y, Paydar OH, Candler RN. 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A Phys. 2015;226:137–42. https://doi.org/10.1016/j.sna.2015.02.028.
Article
CAS
Google Scholar
He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A. Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluidics. 2015;19:447–56. https://doi.org/10.1007/s10404-015-1571-7.
Article
CAS
Google Scholar
Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC, de Jesus DP, et al. 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles. Microchem J. 2019;146:1083–9. https://doi.org/10.1016/j.microc.2019.02.043.
Article
CAS
Google Scholar
Tothill AM, Partridge M, James SW, Tatam RP. Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. J Micromech Microeng. 2017;27:035018.
Article
Google Scholar
Beauchamp MJ, Nordin GP, Woolley AT. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem. 2017;409:4311–9. https://doi.org/10.1007/s00216-017-0398-3.
Article
CAS
Google Scholar
Kabirian F, Ditkowski B, Zamanian A, Heying R, Mozafari M. An innovative approach towards 3D-printed scaffolds for the next generation of tissue-engineered vascular grafts. Mater Today Proc. 2018;5:15586–94.
Article
CAS
Google Scholar
Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins used in dentistry. J Biomed Mater Res Part B Appl Biomater. 2012;100B:1444–50. https://doi.org/10.1002/jbm.b.32673.
Article
CAS
Google Scholar
Lye KW, Tideman H, Wolke JCG, Merkx MAW, Chin FKC, Jansen JA. Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clin Oral Implants Res. 2013;24:100–9. https://doi.org/10.1111/j.1600-0501.2011.02388.x.
Article
Google Scholar
Chen Y, Zhang L, Chen G. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis. 2008;29:1801–14. https://doi.org/10.1002/elps.200700552.
Article
CAS
Google Scholar
Hermanson NJ, Crittenden PA, Novak LR, Woods RA. Chemical resistance of polycarbonate. Amsterdam: Elsevier; 1998. p. 117–22.
Google Scholar
Shamim N, Koh YP, Simon SL, McKenna GB. Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. J Polym Sci Part B Polym Phys. 2014;52:1462–8. https://doi.org/10.1002/polb.23583.
Article
CAS
Google Scholar
Ongaro AE, Di Giuseppe D, Kermanizadeh A, Miguelez Crespo A, Mencattini A, Ghibelli L, et al. Polylactic is a sustainable, low absorption, low autofluorescence alternative to other plastics for microfluidic and organ-on-chip applications. Anal Chem. 2020;92:6693–701. https://doi.org/10.1021/acs.analchem.0c00651.
Article
CAS
Google Scholar
Sochol RD, Sweet E, Glick CC, Wu S-Y, Yang C, Restaino M, et al. 3D printed microfluidics and microelectronics. Microelectron Eng. 2018;189:52–68.
Article
CAS
Google Scholar
Sibeko MA, Saladino ML, Luyt AS, Caponetti E. Morphology and properties of poly(methyl methacrylate) (PMMA) filled with mesoporous silica (MCM-41) prepared by melt compounding. J Mater Sci. 2016;51:3957–70. https://doi.org/10.1007/s10853-015-9714-5.
Article
CAS
Google Scholar
Yavuz C, Oliaei SNB, Cetin B, Yesil-Celiktas O. Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics. J Supercrit Fluids. 2016;107:114–21.
Article
CAS
Google Scholar
Ali U, Karim KJBA, Buang NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55:678–705. https://doi.org/10.1080/15583724.2015.1031377.
Article
CAS
Google Scholar
Trotta G, Volpe A, Ancona A, Fassi I. Flexible micro manufacturing platform for the fabrication of PMMA microfluidic devices. J Manuf Process. 2018;35:107–17.
Article
Google Scholar
Tomazelli Coltro WK, Cheng CM, Carrilho E, de Jesus DP. Recent advances in low-cost microfluidic platforms for diagnostic applications. Electrophoresis. 2014;35:2309–24. https://doi.org/10.1002/elps.201400006.
Article
CAS
Google Scholar
Guo J, Yu Y, Cai L, Wang Y, Shi K, Shang L, et al. Microfluidics for flexible electronics. Mater Today. 2021. https://doi.org/10.1016/j.mattod.2020.08.017.
Article
Google Scholar
Sabourin D, Petersen J, Snakenborg D, Brivio M, Gudnadson H, Wolff A, et al. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure. Biomed Microdevices. 2010;12:673–81. https://doi.org/10.1007/s10544-010-9420-7.
Article
CAS
Google Scholar
Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, et al. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device. Analyst. 2014;139:1355–63.
Article
CAS
Google Scholar
Wongkaew N, He P, Kurth V, Surareungchai W, Baeumner AJ. Multi-channel PMMA microfluidic biosensor with integrated IDUAs for electrochemical detection. Anal Bioanal Chem. 2013;405:5965–74. https://doi.org/10.1007/s00216-013-7020-0.
Article
CAS
Google Scholar
Yeh CH, Zhao Q, Lee SJ, Lin YC. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sens Actuators A Phys. 2009;151:231–6.
Article
CAS
Google Scholar
Su S, Jing G, Zhang M, Liu B, Zhu X, Wang B, et al. One-step bonding and hydrophobic surface modification method for rapid fabrication of polycarbonate-based droplet microfluidic chips. Sens Actuators B Chem. 2019;282:60–8.
Article
CAS
Google Scholar
Jia Y, Asahara H, Hsu Y-I, Asoh T-A, Uyama H. Surface modification of polycarbonate using the light-activated chlorine dioxide radical. Appl Surf Sci. 2020;530:147202.
Article
CAS
Google Scholar
Wang Y, He Q, Dong Y, Chen H. In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose. Sens Actuators B Chem. 2010;145:553–60.
Article
CAS
Google Scholar
Ogończyk D, Węgrzyn J, Jankowski P, Dąbrowski B, Garstecki P. Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip. 2010;10:1324.
Article
Google Scholar
Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK. FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal Chem. 2018;90:10450–6.
Article
CAS
Google Scholar
Guo T, Holzberg TR, Lim CG, Gao F, Gargava A, Trachtenberg JE, et al. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication. 2017;9:024101.
Article
Google Scholar
Wang L, Kodzius R, Yi X, Li S, Hui YS, Wen W. Prototyping chips in minutes: direct laser plotting (DLP) of functional microfluidic structures. Sens Actuators B Chem. 2012;168:214–22. https://doi.org/10.1016/j.snb.2012.04.011.
Article
CAS
Google Scholar
Macdonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16:291–7.
Article
CAS
Google Scholar
Piironen K, Haapala M, Talman V, Järvinen P, Sikanen T. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices. Lab Chip. 2020;20:2372–82.
Article
CAS
Google Scholar
Correa H, Aristizabal F, Duque C, Kerr R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (Southwest Caribbean Sea). Mar Drugs. 2011;9:334–44.
Article
CAS
Google Scholar
Ultimaker. Ultimaker 3 manual (En) v1.4. p. 1–60. 2017. https://ultimaker.com/en/products/ultimaker-3. Accessed 28 Jan 2021.
Park SJ, Lee JE, Lee HB, Park J, Lee N-K, Son Y, et al. 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Addit Manuf. 2020;31:100974.
CAS
Google Scholar
Stone HA. Introduction to fluid dynamics for microfluidic flows. In: Lee H, Westervelt RM, Ham D (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. 2007. https://doi.org/10.1007/978-0-387-68913-5_2.
Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D. Assessment of the biocompatibility of three-dimensional-printed polymers using multispecies toxicity tests. Biomicrofluidics. 2015;9:061103. https://doi.org/10.1063/1.4939031.
Article
CAS
Google Scholar
Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, et al. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat Commun. 2021;12:5509.
Article
CAS
Google Scholar
Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials. 2004;25:4699–707.
Article
CAS
Google Scholar
Li RY, Liu ZG, Liu HQ, Chen L, Liu JF, Pan YH. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films. Am J Transl Res. 2015;7:1357–70.
CAS
Google Scholar
da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14. https://doi.org/10.1016/j.cej.2018.01.010.
Article
CAS
Google Scholar
Joz Majidi H, Babaei A, Kazemi-Pasarvi S, Arab-Bafrani Z, Amiri M. Tuning polylactic acid scaffolds for tissue engineering purposes by incorporating graphene oxide-chitosan nano-hybrids. Polym Adv Technol. 2021;32:1654–66.
Article
CAS
Google Scholar
Lim KT, Hexiu J, Kim J, Seonwoo H, Choung P-H, Chung JH. Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int. 2014;2014:1–18.
Google Scholar
Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep. 2010;8:98–104. https://doi.org/10.1007/s11914-010-0015-2.
Article
Google Scholar
Bjerre L, Bünger CE, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29:2616–27.
Article
CAS
Google Scholar
Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part A. 2008. https://doi.org/10.1002/jbm.a.31967.
Article
Google Scholar
Babaliari E, Petekidis G, Chatzinikolaidou M. A precisely flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering. Bioengineering. 2018;5:66.
Article
CAS
Google Scholar
Hong D, Chen HX, Xue Y, Li DM, Wan XC, Ge R, et al. Osteoblastogenic effects of dexamethasone through upregulation of TAZ expression in rat mesenchymal stem cells. J Steroid Biochem Mol Biol. 2009;116:86–92.
Article
CAS
Google Scholar
Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:1.
Article
Google Scholar