Liang J, Teng P, Xiao W, He G, Song Q, Zhang Y, et al. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. J Nanobiotechnol. 2021;19:273.
Article
CAS
Google Scholar
Bock S, Choi YS, Kim M, Yun Y, Pham XH, Kim J, et al. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps. J Nanobiotechnol. 2022;20:130.
Article
CAS
Google Scholar
Cardinal MF, Vander Ende E, Hackler RA, McAnally MO, Stair PC, Schatz GC, et al. Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev. 2017;46:3886–903.
Article
CAS
Google Scholar
Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46:4042–76.
Article
CAS
Google Scholar
Zong C, Xu M, Xu L-J, Wei T, Ma X, Zheng X-S, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev. 2018;118:4946–80.
Article
CAS
Google Scholar
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020;14:28–117.
Article
CAS
Google Scholar
Haldavnekar R, Venkatakrishnan K, Tan B. Next generation SERS- atomic scale platform for molecular level detection. Appl Mater Today. 2020;18:100529.
Article
Google Scholar
Ran P, Jiang L, Li X, Li B, Zuo P, Lu Y. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications. Small. 2019;15:1804899.
Article
Google Scholar
Chen R, Du X, Cui Y, Zhang X, Ge Q, Dong J, et al. Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags. Small. 2020;16:2002801.
Article
CAS
Google Scholar
Huang JA, Mousavi MZ, Zhao Y, Hubarevich A, Omeis F, Giovannini G, et al. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat Commun. 2019;10:5321.
Article
Google Scholar
Lee J, Crampton KT, Tallarida N, Apkarian VA. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature. 2019;568:78–82.
Article
CAS
Google Scholar
Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem. 2012;63:65–87.
Article
Google Scholar
Michaels AM, Nirmal M, Brus LE. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc. 1999;121:9932–9.
Article
CAS
Google Scholar
Stöckle RM, Suh YD, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett. 2000;318:131–6.
Article
Google Scholar
De Angelis F, Patrini M, Das G, Maksymov I, Galli M, Businaro L, et al. A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 2008;8:2321–7.
Article
Google Scholar
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater. 2010;9:193–204.
Article
CAS
Google Scholar
De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics. 2011;5:682–7.
Article
Google Scholar
Nair PR, Alam MA. Performance limits of nanobiosensors. Appl Phys Lett. 2006;88:233120.
Article
Google Scholar
Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005;5:803–7.
Article
CAS
Google Scholar
Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, et al. Nanoholes as nanochannels: Flow-through plasmonic sensing. Anal Chem. 2009;81:4308–11.
Article
CAS
Google Scholar
Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, et al. Close encounters between two nanoshells. Nano Lett. 2008;8:1212–8.
Article
CAS
Google Scholar
Xiao L, Wang C, Dai C, Littlepage LE, Li J, Schultz ZD. Untargeted tumor metabolomics with liquid chromatography–surface-enhanced Raman spectroscopy. Angew Chemie Int Ed. 2020;59:3439–43.
Article
CAS
Google Scholar
Xu F, Zhang Y, Sun Y, Shi Y, Wen Z, Li Z. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect. J Phys Chem C. 2011;115:9977–83.
Article
CAS
Google Scholar
Lee HK, Lee YH, Zhang Q, Phang IY, Tan JMR, Cui Y, et al. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. ACS Appl Mater Interfaces. 2013;5:11409–18.
Article
CAS
Google Scholar
Kao Y-C, Han X, Lee YH, Lee HK, Phan-Quang GC, Lay CL, et al. Multiplex surface-enhanced Raman scattering identification and quantification of urine metabolites in patient samples within 30 min. ACS Nano. 2020;14:2542–52.
Article
CAS
Google Scholar
Li X, Lee HK, Phang IY, Lee CK, Ling XY. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor. Anal Chem. 2014;86:10437–44.
Article
CAS
Google Scholar
Du X, Liu D, An K, Jiang S, Wei Z, Wang S, et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today. 2022;29:101563.
Article
Google Scholar
Wang ZL. Nanostructures of zinc oxide. Mater Today. 2004;7:26–33.
Article
CAS
Google Scholar
Hu W, Liu Y, Chen T, Liu Y, Li CM. Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv Mater. 2015;27:181–5.
Article
CAS
Google Scholar
Cui H, Liu Q, Li R, Wei X, Sun Y, Wang Z, et al. ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells. Nanoscale. 2020;12:1455–63.
Article
CAS
Google Scholar
Ye Y, Yi W, Liu W, Zhou Y, Bai H, Li J, et al. Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci China Mater. 2020;63:794–805.
Article
CAS
Google Scholar
Sarycheva A, Makaryan T, Maleski K, Satheeshkumar E, Melikyan A, Minassian H, et al. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J Phys Chem C. 2017;121:19983–8.
Article
CAS
Google Scholar
Li G, Bin GW, Qiu T, Cong S, Zhao Z, Ma R, et al. Surface-modified two-dimensional titanium carbide sheets for intrinsic vibrational signal-retained surface-enhanced Raman scattering with ultrahigh uniformity. ACS Appl Mater Interfaces. 2020;12:23523–31.
Article
CAS
Google Scholar
Li J, Kurra N, Seredych M, Meng X, Wang H, Gogotsi Y. Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy. 2019;56:151–9.
Article
CAS
Google Scholar
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29:7633–44.
Article
CAS
Google Scholar
Wu Z, Zhao D, Hou C, Liu L, Chen J, Huang H, et al. Enhanced immunofluorescence detection of a protein marker using a PAA modified ZnO nanorod array-based microfluidic device. Nanoscale. 2018;10:17663–70.
Article
CAS
Google Scholar
Zhao D, Wu Z, Zhang W, Yu J, Li H, Di W, et al. Substrate-induced growth of micro/nanostructured Zn(OH)F arrays for highly sensitive microfluidic fluorescence assays. ACS Appl Mater Interfaces. 2021;13:28462–71.
Article
CAS
Google Scholar
Zhao D, Wu Z, Yu J, Wang H, Li Y, Duan Y. Highly sensitive microfluidic detection of carcinoembryonic antigen via a synergetic fluorescence enhancement strategy based on the micro/nanostructure optimization of ZnO nanorod arrays and in situ ZIF-8 coating. Chem Eng J. 2020;383:123230.
Article
CAS
Google Scholar
Li H, Wang J, Liu H, Zhang H, Li X. Zinc oxide films prepared by sol–gel method. J Cryst Growth. 2005;275:e943–6.
Article
CAS
Google Scholar
Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–79.
Article
Google Scholar
Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys. 1999;59:1758–75.
Article
Google Scholar
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–8.
Article
CAS
Google Scholar
Yang Z, Liu G. First-principles study on the influence of compressive deformation on the oxygen adsorption energy and electrical properties of phosphorene. Phys B Condens Matter. 2019;563:72–8.
Article
CAS
Google Scholar
Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, et al. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew Chemie Int Ed. 2017;56:9851–5.
Article
CAS
Google Scholar
Bell SEJ, Sirimuthu NMS. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc. 2006;128:15580–1.
Article
CAS
Google Scholar
El Amri C, Marie-Helene B, Marie-Christine M. Adenine and RNA in mineral samples. Surface-enhanced Raman spectroscopy (SERS) for picomole detections. Spectrochim Acta A Mol Biomol Spectrosc. 2003;59:2645–54.
Google Scholar
Driskell JD, Primera-pedrozo OM, Dluhy RA, Zhao Y, Tripp RA. Quantitative surface-enhanced Raman spectroscopy based analysis of MicroRNA mixtures. Appl Spectrosc. 2009;63:1107–14.
Article
CAS
Google Scholar
Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao Y, et al. Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron. 2008;24:917–22.
Article
CAS
Google Scholar