Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86:102019. https://doi.org/10.1016/j.ctrv.2020.102019.
Article
CAS
Google Scholar
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70:86–104. https://doi.org/10.3322/caac.21596.
Article
Google Scholar
Ni K, Luo T, Nash GT, Lin W. Nanoscale metal-organic frameworks for cancer immunotherapy. Acc Chem Res. 2020;53:1739–48. https://doi.org/10.1021/acs.accounts.0c00313.
Article
CAS
Google Scholar
Wulff H, Christophersen P, Colussi P, Chandy KG, Yarov-Yarovoy V. Antibodies and venom peptides: new modalities for ion channels. Nat Rev Drug Discov. 2019;18:339–57. https://doi.org/10.1038/s41573-019-0013-8.
Article
CAS
Google Scholar
Sun X, et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16:1260–70. https://doi.org/10.1038/s41565-021-00962-9.
Article
CAS
Google Scholar
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–96. https://doi.org/10.1038/s41573-018-0006-z.
Article
CAS
Google Scholar
Wu MX, Yang YW. Metal-Organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017. https://doi.org/10.1002/adma.201606134.
Article
Google Scholar
Sun Y, Ma X, Hu H. Application of nano-drug delivery system based on cascade technology in cancer treatment. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115698.
Article
Google Scholar
Liu J, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32:693–710. https://doi.org/10.1016/j.biotechadv.2013.11.009.
Article
CAS
Google Scholar
Li J, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev. 2018;47:2322–56. https://doi.org/10.1039/c7cs00543a.
Article
CAS
Google Scholar
Chen Y, et al. Tumor-microenvironment-triggered ion exchange of a metal-organic framework hybrid for multimodal imaging and synergistic therapy of tumors. Adv Mater. 2020;32:e2001452. https://doi.org/10.1002/adma.202001452.
Article
CAS
Google Scholar
Qian X, Xu Z. Fluorescence imaging of metal ions implicated in diseases. Chem Soc Rev. 2015;44:4487–93. https://doi.org/10.1039/c4cs00292j.
Article
CAS
Google Scholar
Wang Y, et al. Synthesis and characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for multimodal imaging and theranostic applications. Small. 2016;12:534–46. https://doi.org/10.1002/smll.201503352.
Article
CAS
Google Scholar
Fei W, et al. Engineering of bioactive metal sulfide nanomaterials for cancer therapy. J Nanobiotechnol. 2021;19:93. https://doi.org/10.1186/s12951-021-00839-y.
Article
CAS
Google Scholar
Hu H, et al. New anti-cancer explorations based on metal ions. J Nanobiotechnol. 2022;20:457. https://doi.org/10.1186/s12951-022-01661-w.
Article
Google Scholar
Wang C, Zhang R, Wei X, Lv M, Jiang Z. Metalloimmunology: the metal ion-controlled immunity. Adv Immunol. 2020;145:187–241. https://doi.org/10.1016/bs.ai.2019.11.007.
Article
CAS
Google Scholar
Bird AJ. Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem. 2015;26:1103–15. https://doi.org/10.1016/j.jnutbio.2015.08.002.
Article
CAS
Google Scholar
Leslie TK, et al. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer. 2019;1872:188304. https://doi.org/10.1016/j.bbcan.2019.07.001.
Article
CAS
Google Scholar
Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev. 2018;98:559–621. https://doi.org/10.1152/physrev.00044.2016.
Article
CAS
Google Scholar
Stelling MP, et al. Metal ions and the extracellular matrix in tumor migration. Febs J. 2019;286:2950–64. https://doi.org/10.1111/febs.14986.
Article
CAS
Google Scholar
Boonstra J, Mummery CL, Tertoolen LG, Van Der Saag PT, De Laat SW. Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle. J Cell Physiol. 1981;107:75–83. https://doi.org/10.1002/jcp.1041070110.
Article
CAS
Google Scholar
Martial S. Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. Am J Physiol Cell Physiol. 2016;310:C710-727. https://doi.org/10.1152/ajpcell.00218.2015.
Article
Google Scholar
Panyi G, Beeton C, Felipe A. Ion channels and anti-cancer immunity. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130106. https://doi.org/10.1098/rstb.2013.0106.
Article
Google Scholar
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8. https://doi.org/10.1016/j.canlet.2016.01.043.
Article
CAS
Google Scholar
Yang Y, et al. DNA-based MXFs to enhance radiotherapy and stimulate robust antitumor immune responses. Nano Lett. 2022;22:2826–34. https://doi.org/10.1021/acs.nanolett.1c04888.
Article
CAS
Google Scholar
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell. 2020;78:1019–33. https://doi.org/10.1016/j.molcel.2020.05.034.
Article
CAS
Google Scholar
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater. 2021;6:1973–87. https://doi.org/10.1016/j.bioactmat.2020.12.010.
Article
CAS
Google Scholar
Han JH, et al. Combination of metal-phenolic network-based immunoactive nanoparticles and bipolar irreversible electroporation for effective cancer immunotherapy. Small. 2022;18:e2200316. https://doi.org/10.1002/smll.202200316.
Article
CAS
Google Scholar
Zhao DH, et al. tumor microenvironment-activated theranostics nanozymes for fluorescence imaging and enhanced chemo-chemodynamic therapy of tumors. ACS Appl Mater Interfaces. 2021;13:55780–9. https://doi.org/10.1021/acsami.1c12611.
Article
CAS
Google Scholar
Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol. 2015;33:291–353. https://doi.org/10.1146/annurev-immunol-032414-112212.
Article
CAS
Google Scholar
Yang Y, et al. Interaction between macrophages and ferroptosis. Cell Death Dis. 2022;13:355. https://doi.org/10.1038/s41419-022-04775-z.
Article
CAS
Google Scholar
Schwab A, Loeck T, Najder-Nalepa K. STIM2: Redox-sensor and effector of the (tumor) microenvironment. Cell Calcium. 2021;94:102335. https://doi.org/10.1016/j.ceca.2020.102335.
Article
CAS
Google Scholar
Sang Y, et al. Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano. 2021;15:19298–309. https://doi.org/10.1021/acsnano.1c05392.
Article
CAS
Google Scholar
Zhao Q, et al. Target reprogramming lysosomes of CD8+ T cells by a mineralized metal-organic framework for cancer immunotherapy. Adv Mater. 2021;33:e2100616. https://doi.org/10.1002/adma.202100616.
Article
CAS
Google Scholar
St Paul M, Ohashi PS. The Roles of CD8(+) T Cell subsets in antitumor immunity. Trends Cell Biol. 2020;30:695–704. https://doi.org/10.1016/j.tcb.2020.06.003.
Article
CAS
Google Scholar
Demaria O, et al. Harnessing innate immunity in cancer therapy. Nature. 2019;574:45–56. https://doi.org/10.1038/s41586-019-1593-5.
Article
CAS
Google Scholar
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71. https://doi.org/10.1146/annurev-immunol-031210-101324.
Article
CAS
Google Scholar
Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93–106. https://doi.org/10.1016/j.mam.2019.05.001.
Article
CAS
Google Scholar
Hu H, et al. Intestinal microbiota regulates anti-tumor effect of disulfiram combined with Cu(2+) in a mice model. Cancer Med. 2020;9:6791–801. https://doi.org/10.1002/cam4.3346.
Article
CAS
Google Scholar
Bessman NJ, et al. Dendritic cell-derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science. 2020;368:186–9. https://doi.org/10.1126/science.aau6481.
Article
CAS
Google Scholar
Minton K. Ironing out the details of intestinal repair. Nat Rev Immunol. 2020;20:350–1. https://doi.org/10.1038/s41577-020-0310-9.
Article
CAS
Google Scholar
Rescigno M. The “iron will” of the gut. Science. 2020;368:129–30. https://doi.org/10.1126/science.abb2915.
Article
CAS
Google Scholar
Lonergan ZR, Skaar EP. Nutrient zinc at the host-pathogen interface. Trends Biochem Sci. 2019;44:1041–56. https://doi.org/10.1016/j.tibs.2019.06.010.
Article
CAS
Google Scholar
Souffriau J, et al. Zinc inhibits lethal inflammatory shock by preventing microbe-induced interferon signature in intestinal epithelium. EMBO Mol Med. 2020;12:e11917. https://doi.org/10.15252/emmm.201911917.
Article
CAS
Google Scholar
Fol M, Koziński P, Kulesza J, Białecki P, Druszczyńska M. Dual nature of relationship between mycobacteria and cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22158332.
Article
Google Scholar
Li X, et al. A novel stress-inducible CmtR-ESX3-Zn(2+) regulatory pathway essential for survival of Mycobacterium bovis under oxidative stress. J Biol Chem. 2020;295:17083–99. https://doi.org/10.1074/jbc.RA120.013017.
Article
CAS
Google Scholar
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018;361:704–9. https://doi.org/10.1126/science.aat1022.
Article
CAS
Google Scholar
Kwon J, Bakhoum SF. The cytosolic DNA-Sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10:26–39. https://doi.org/10.1158/2159-8290.Cd-19-0761.
Article
CAS
Google Scholar
Bakhoum SF, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72. https://doi.org/10.1038/nature25432.
Article
CAS
Google Scholar
Reisländer T, Groelly FJ, Tarsounas M. DNA damage and cancer immunotherapy: a STING in the tale. Mol Cell. 2020;80:21–8. https://doi.org/10.1016/j.molcel.2020.07.026.
Article
CAS
Google Scholar
Lv M, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30:966–79. https://doi.org/10.1038/s41422-020-00395-4.
Article
CAS
Google Scholar
Rozenberg JM, et al. The role of the metabolism of Zinc and Manganese Ions in human cancerogenesis. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10051072.
Article
Google Scholar
Wang C, et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity. 2018;48:675-687.e677. https://doi.org/10.1016/j.immuni.2018.03.017.
Article
CAS
Google Scholar
Zhang L, et al. A peritumorally injected immunomodulating adjuvant Elicits robust and safe metalloimmunotherapy against solid tumors. Adv Mater. 2022. https://doi.org/10.1002/adma.202206915.
Article
Google Scholar
He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. https://doi.org/10.1016/j.tibs.2016.09.002.
Article
CAS
Google Scholar
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22:550–9. https://doi.org/10.1038/s41590-021-00886-5.
Article
CAS
Google Scholar
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. https://doi.org/10.1038/s41577-019-0165-0.
Article
CAS
Google Scholar
Scambler T, et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. Elife. 2019. https://doi.org/10.7554/eLife.49248.
Article
Google Scholar
Muñoz-Planillo R, et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53. https://doi.org/10.1016/j.immuni.2013.05.016.
Article
CAS
Google Scholar
Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128. https://doi.org/10.1038/s41419-019-1413-8.
Article
Google Scholar
Lee GS, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 2012;492:123–7. https://doi.org/10.1038/nature11588.
Article
CAS
Google Scholar
Dong H, et al. Mitochondrial calcium uniporter promotes phagocytosis-dependent activation of the NLRP3 inflammasome. Proc Natl Acad Sci USA. 2022;119:e2123247119. https://doi.org/10.1073/pnas.2123247119.
Article
CAS
Google Scholar
Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18:1141–60. https://doi.org/10.1038/s41423-021-00670-3.
Article
CAS
Google Scholar
Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55:14–30. https://doi.org/10.1016/j.immuni.2021.12.012.
Article
CAS
Google Scholar
Eil R, et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature. 2016;537:539–43. https://doi.org/10.1038/nature19364.
Article
CAS
Google Scholar
Conforti L. Potassium channels of T lymphocytes take center stage in the fight against cancer. J Immunother Cancer. 2017. https://doi.org/10.1186/s40425-016-0202-5.
Article
Google Scholar
Chandy KG, Norton RS. Immunology: channelling potassium to fight cancer. Nature. 2016;537:497–9. https://doi.org/10.1038/nature19467.
Article
CAS
Google Scholar
Vodnala SK, et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science. 2019. https://doi.org/10.1126/science.aau0135.
Article
Google Scholar
Baixauli F, Villa M, Pearce EL. Potassium shapes antitumor immunity. Science. 2019;363:1395–6. https://doi.org/10.1126/science.aaw8800.
Article
CAS
Google Scholar
Lien EC, Lau AN, Vander Heiden MG. Putting the K(+) in K(+)aloric Restriction. Immunity. 2019;50:1129–31. https://doi.org/10.1016/j.immuni.2019.04.016.
Article
CAS
Google Scholar
Vardhana S, Dustin ML. Magnesium for T cells: strong to the finish! Trends Immunol. 2022;43:277–9. https://doi.org/10.1016/j.it.2022.02.004.
Article
CAS
Google Scholar
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol. 2022. https://doi.org/10.1038/s42003-021-02995-1.
Article
Google Scholar
Bird L. Magnesium: essential for T cells. Nat Rev Immunol. 2022;22:144–5. https://doi.org/10.1038/s41577-022-00688-2.
Article
CAS
Google Scholar
Lötscher J, et al. Magnesium sensing via LFA-1 regulates CD8(+) T cell effector function. Cell. 2022;185:585-602.e529. https://doi.org/10.1016/j.cell.2021.12.039.
Article
CAS
Google Scholar
Shi X, et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature. 2013;493:111–5. https://doi.org/10.1038/nature11699.
Article
CAS
Google Scholar
Leitenberg D, Falahati R, Lu DD, Takeda A. CD45-associated protein promotes the response of primary CD4 T cells to low-potency T-cell receptor (TCR) stimulation and facilitates CD45 association with CD3/TCR and lck. Immunology. 2007;121:545–54. https://doi.org/10.1111/j.1365-2567.2007.02602.x.
Article
CAS
Google Scholar
Ma Y, et al. Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21103498.
Article
Google Scholar
Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925.
Article
CAS
Google Scholar
Farooq MA, et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artif Cells Nanomed Biotechnol. 2019;47:1674–92. https://doi.org/10.1080/21691401.2019.1604535.
Article
CAS
Google Scholar
Fournel L, et al. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer. Cancer Lett. 2019;464:5–14. https://doi.org/10.1016/j.canlet.2019.08.005.
Article
CAS
Google Scholar
Smialowicz RJ, et al. Manganese chloride enhances murine cell-mediated cytotoxicity: effects on natural killer cells. J Immunopharmacol. 1984. https://doi.org/10.3109/08923978409026455.
Article
Google Scholar
Li T, et al. Magnesium-assisted cisplatin inhibits bladder cancer cell survival by modulating Wnt/β-catenin signaling pathway. Front Pharmacol. 2021;12:804615. https://doi.org/10.3389/fphar.2021.804615.
Article
CAS
Google Scholar
Draghi PF, et al. Magnesium supplementation: effect on the expression of inflammation genes in Erlich’s tumor. J Diet Suppl. 2022;19:483–98. https://doi.org/10.1080/19390211.2021.1897056.
Article
CAS
Google Scholar
Pedersen SF, Stock C. Ion channels and transporters in cancer: pathophysiology, regulation, and clinical potential. Cancer Res. 2013;73:1658–61. https://doi.org/10.1158/0008-5472.Can-12-4188.
Article
CAS
Google Scholar
Miyai T, et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc Natl Acad Sci USA. 2014;111:11780–5. https://doi.org/10.1073/pnas.1323549111.
Article
CAS
Google Scholar
Shrivastava P, Katagiri T, Ogimoto M, Mizuno K, Yakura H. Dynamic regulation of Src-family kinases by CD45 in B cells. J Blood. 2004;103:1425–32. https://doi.org/10.1182/blood-2003-03-0716.
Article
CAS
Google Scholar
Lee K, Sung C, Kim BG, Hahn JS. Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2013;438:43–7. https://doi.org/10.1016/j.bbrc.2013.07.019.
Article
CAS
Google Scholar
Song W, Li D, Tao L, Luo Q, Chen L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B. 2020;10:61–78. https://doi.org/10.1016/j.apsb.2019.12.006.
Article
CAS
Google Scholar
Su X, et al. A carbonic anhydrase IX (CAIX)-Anchored Rhenium(I) Photosensitizer evokes Pyroptosis for enhanced anti-tumor immunity. Angew Chem Int Ed Engl. 2022;61:e202115800. https://doi.org/10.1002/anie.202115800.
Article
CAS
Google Scholar
Xu J, et al. Regulation mechanism of ferroptosis and its research progress in tumor immunotherapy. Front Mol Biosci. 2022;9:1045548. https://doi.org/10.3389/fmolb.2022.1045548.
Article
CAS
Google Scholar
Tang R, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13:110. https://doi.org/10.1186/s13045-020-00946-7.
Article
CAS
Google Scholar
Efimova I, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-001369.
Article
Google Scholar
Tsvetkov P, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61. https://doi.org/10.1126/science.abf0529.
Article
CAS
Google Scholar
Yue S, Luo M, Liu H, Wei S. Recent advances of gold compounds in anticancer immunity. Front Chem. 2020;8:543. https://doi.org/10.3389/fchem.2020.00543.
Article
CAS
Google Scholar
Sun M, He L, Fan Z, Tang R, Du J. Effective treatment of drug-resistant lung cancer via a nanogel capable of reactivating cisplatin and enhancing early apoptosis. Biomaterials. 2020;257:120252. https://doi.org/10.1016/j.biomaterials.2020.120252.
Article
CAS
Google Scholar
Li D, Molldrem JJ, Ma Q. LFA-1 regulates CD8+ T cell activation via T cell receptor-mediated and LFA-1-mediated Erk1/2 signal pathways. J Biol Chem. 2009;284:21001–10. https://doi.org/10.1074/jbc.M109.002865.
Article
CAS
Google Scholar
Wang W, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4. https://doi.org/10.1038/s41586-019-1170-y.
Article
CAS
Google Scholar
Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B. 2017;7:3–17. https://doi.org/10.1016/j.apsb.2016.11.001.
Article
Google Scholar
Zhao H, et al. STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics. 2020;10:6483–99. https://doi.org/10.7150/thno.44025.
Article
CAS
Google Scholar
Sergi CM. The role of Zinc in the T-cell metabolism in infection requires further investigation—an opinion. Front Immunol. 2022;13:865504. https://doi.org/10.3389/fimmu.2022.865504.
Article
CAS
Google Scholar
Voli F, et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020;80:4129–44. https://doi.org/10.1158/0008-5472.Can-20-0471.
Article
CAS
Google Scholar
Tran L, et al. Cisplatin alters antitumor immunity and synergizes with PD-1/PD-L1 inhibition in head and neck squamous cell carcinoma. Cancer Immunol Res. 2017;5:1141–51. https://doi.org/10.1158/2326-6066.Cir-17-0235.
Article
CAS
Google Scholar
Glorieux C, et al. Cisplatin and gemcitabine exert opposite effects on immunotherapy with PD-1 antibody in K-ras-driven cancer. J Adv Res. 2022;40:109–24. https://doi.org/10.1016/j.jare.2021.12.005.
Article
CAS
Google Scholar
Hou L, et al. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano. 2020;14:3927–40. https://doi.org/10.1021/acsnano.9b06111.
Article
CAS
Google Scholar
Yang G, et al. Hollow MnO(2) as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun. 2017;8:902. https://doi.org/10.1038/s41467-017-01050-0.
Article
CAS
Google Scholar
Liu Y, et al. A tumor microenvironment responsive biodegradable CaCO(3)/MnO(2)—based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9:6867–84. https://doi.org/10.7150/thno.37586.
Article
CAS
Google Scholar
Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horiz. 2021;6:696–717. https://doi.org/10.1039/d1nh00179e.
Article
CAS
Google Scholar
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16:69–78. https://doi.org/10.1080/17425247.2019.1554647.
Article
CAS
Google Scholar
Guo Y, et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials. 2019;219:119370. https://doi.org/10.1016/j.biomaterials.2019.119370.
Article
CAS
Google Scholar
Matsumura S, Aoki I, Saga T, Shiba K. A tumor-environment-responsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance T2 relaxivity for magnetic resonance imaging. Mol Pharm. 2011;8:1970–4. https://doi.org/10.1021/mp2001999.
Article
CAS
Google Scholar
Yang Y, et al. Blue light-triggered Fe(2+)-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials. 2021;271:120739. https://doi.org/10.1016/j.biomaterials.2021.120739.
Article
CAS
Google Scholar
Wang Y, et al. Metal ions/nucleotide coordinated nanoparticles comprehensively suppress tumor by synergizing ferroptosis with energy metabolism interference. J Nanobiotechnology. 2022;20:199. https://doi.org/10.1186/s12951-022-01405-w.
Article
CAS
Google Scholar
Gupta N, Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim Biophys Acta Rev Cancer. 2021;1875:188532. https://doi.org/10.1016/j.bbcan.2021.188532.
Article
CAS
Google Scholar
Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26:4200–17. https://doi.org/10.1002/adma.201400238.
Article
CAS
Google Scholar
Chen N, et al. Self-assembly of poly-adenine-tailed CpG oligonucleotide-gold nanoparticle nanoconjugates with immunostimulatory activity. Small. 2014;10:368–75. https://doi.org/10.1002/smll.201300903.
Article
CAS
Google Scholar
Janic B, et al. Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther. 2021;22:124–35. https://doi.org/10.1080/15384047.2020.1861923.
Article
CAS
Google Scholar
Lin AY, et al. Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS ONE. 2013;8:e63550. https://doi.org/10.1371/journal.pone.0063550.
Article
CAS
Google Scholar
Rai A, Ferreira L. Biomedical applications of the peptide decorated gold nanoparticles. Crit Rev Biotechnol. 2021;41:186–215. https://doi.org/10.1080/07388551.2020.1853031.
Article
CAS
Google Scholar
Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small. 2015;11:1453–9. https://doi.org/10.1002/smll.201402179.
Article
CAS
Google Scholar
Khoobchandani M, et al. Green nanotechnology of MGF-AuNPs for immunomodulatory intervention in prostate cancer therapy. Sci Rep. 2021;11:16797. https://doi.org/10.1038/s41598-021-96224-8.
Article
CAS
Google Scholar
Patra N, Dehury N, Pal A, Behera A, Patra S. Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticle. Mater Sci Eng C Mater Biol Appl. 2018;90:439–45. https://doi.org/10.1016/j.msec.2018.04.091.
Article
CAS
Google Scholar
Zhang D, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett. 2019;19:6635–46. https://doi.org/10.1021/acs.nanolett.9b02903.
Article
CAS
Google Scholar
Chen H, et al. Characterization of tumor-targeting Ag2S quantum dots for cancer imaging and therapy in vivo. Nanoscale. 2014;6:12580–90. https://doi.org/10.1039/c4nr03613a.
Article
CAS
Google Scholar
Shen Y, et al. Perspectives for Ag(2)S NIR-II nanoparticles in biomedicine: from imaging to multifunctionality. Nanoscale. 2019;11:19251–64. https://doi.org/10.1039/c9nr05733a.
Article
CAS
Google Scholar
Zhang X, et al. Plasmonic-fluorescent janus Ag/Ag(2)S nanoparticles for In Situ H(2)O(2)-activated NIR-II fluorescence imaging. Nano Lett. 2021;21:2625–33. https://doi.org/10.1021/acs.nanolett.1c00197.
Article
CAS
Google Scholar
Zhao J, Zhang Q, Liu W, Shan G, Wang X. Biocompatible BSA-Ag(2)S nanoparticles for photothermal therapy of cancer. Colloids Surf B Biointerfaces. 2022;211:112295. https://doi.org/10.1016/j.colsurfb.2021.112295.
Article
CAS
Google Scholar
Zhou X, et al. Near-infrared light-responsive nitric oxide delivery platform for enhanced radioimmunotherapy. Nanomicro Lett. 2020;12:100. https://doi.org/10.1007/s40820-020-00431-3.
Article
CAS
Google Scholar
Dong X, et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba1590.
Article
Google Scholar
Song Q, Zhou R, Shu F, Fu W. Cuproptosis scoring system to predict the clinical outcome and immune response in bladder cancer. Front Immunol. 2022;13:958368. https://doi.org/10.3389/fimmu.2022.958368.
Article
CAS
Google Scholar
Sha S, et al. Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol. 2022;13:922780. https://doi.org/10.3389/fimmu.2022.922780.
Article
CAS
Google Scholar
Cheng Y, et al. An intelligent biomimetic nanoplatform for holistic treatment of metastatic triple-negative breast cancer via photothermal ablation and immune remodeling. ACS Nano. 2020;14:15161–81. https://doi.org/10.1021/acsnano.0c05392.
Article
CAS
Google Scholar
Ji B, et al. Hybrid membrane camouflaged copper sulfide nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Acta Biomater. 2020;111:363–72. https://doi.org/10.1016/j.actbio.2020.04.046.
Article
CAS
Google Scholar
Wessels I, Fischer HJ, Rink L. Dietary and physiological effects of zinc on the immune system. Annu Rev Nutr. 2021;41:133–75. https://doi.org/10.1146/annurev-nutr-122019-120635.
Article
CAS
Google Scholar
Yang Z, Yang H, Dong X, Pu M, Ji F. Hesperidin loaded Zn(2+)@ SA/PCT nanocomposites inhibit the proliferation and induces the apoptosis in colon cancer cells (HCT116) through the enhancement of pro-apoptotic protein expressions. J Photochem Photobiol B. 2020. https://doi.org/10.1016/j.jphotobiol.2019.111767.
Article
Google Scholar
Wu P, et al. Engineered EGCG-containing biomimetic nanoassemblies as effective delivery platform for enhanced cancer therapy. Adv Sci. 2022;9:e2105894. https://doi.org/10.1002/advs.202105894.
Article
CAS
Google Scholar
Zhou L, et al. Precisely targeted nano-controller of PD-L1 level for non-small cell lung cancer spinal metastasis immunotherapy. Adv Healthc Mater. 2022. https://doi.org/10.1002/adhm.202200938.
Article
Google Scholar
Cen D, et al. ZnS@BSA Nanoclusters Potentiate Efficacy of Cancer Immunotherapy. Adv Mater. 2021;33:e2104037. https://doi.org/10.1002/adma.202104037.
Article
CAS
Google Scholar
Zhu Y, et al. Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. Sci Adv. 2022. https://doi.org/10.1126/sciadv.abo5285.
Article
Google Scholar
Li Z, et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano. 2022. https://doi.org/10.1021/acsnano.2c08013.
Article
Google Scholar
Zhao Y, et al. Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy. Bioact Mater. 2023;19:237–50. https://doi.org/10.1016/j.bioactmat.2022.04.011.
Article
CAS
Google Scholar
Aguilera-Juárez A, et al. LptD-antigen system on gold nanoparticles: an innovative strategy in the nanovaccine development. Nanotechnology. 2022. https://doi.org/10.1088/1361-6528/ac659b.
Article
Google Scholar
Chen C, et al. Cytosolic delivery of Thiolated Mn-cGAMP nanovaccine to enhance the antitumor immune responses. Small. 2021;17:e2006970. https://doi.org/10.1002/smll.202006970.
Article
CAS
Google Scholar
Zhang Y, Xu Y, Zheng L. Disease ionomics: understanding the role of ions in complex disease. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21228646.
Article
Google Scholar
Smith SJ, Smith BD, Mohney BG. Ocular side effects following intravitreal injection therapy for retinoblastoma: a systematic review. Br J Ophthalmol. 2014;98:292–7. https://doi.org/10.1136/bjophthalmol-2013-303885.
Article
Google Scholar
Wu D, Wang S, Yu G, Chen X. Cell death mediated by the pyroptosis pathway with the aid of nanotechnology prospects for cancer therapy. Angew Chem Int Ed Engl. 2021;60:8018–34. https://doi.org/10.1002/anie.202010281.
Article
CAS
Google Scholar