Hayes TB, Hansen M. From silent spring to silent night: agrochemicals and the anthropocene. Elem Sci Anth. 2017;5:57. https://doi.org/10.1525/elementa.246.
Article
Google Scholar
Nuruzzaman MD, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agr Food Chem. 2016;64:1447–83. https://doi.org/10.1021/acs.jafc.5b05214.
Article
CAS
Google Scholar
Zhao D, Zhang P, Ge L, Zheng GJ, Wang X, Liu W, Yao Z. The legacy of organochlorinated pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Chinese coastal seawater monitored by semi-permeable membrane devices (SPMDs). Mar Pollut Bull. 2018;137:222–30. https://doi.org/10.1016/j.marpolbul.2018.10.004.
Article
CAS
Google Scholar
Pirsaheb M, Moradi N. Sonochemical degradation of pesticides in aqueous solution: investigation on the influence of operating parameters and degradation pathway—a systematic review. Rsc Adv. 2020;10:7396–423. https://doi.org/10.1039/C9RA11025A.
Article
CAS
Google Scholar
Hao L, Lin G, Chen C, Zhou H, Chen H, Zhou X. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties. J Agr Food Chem. 2019;67:9989–99. https://doi.org/10.1021/acs.jafc.9b03060.
Article
CAS
Google Scholar
Kacsó T, Neaga IO, Erincz A, Astete CE, Sabliov CM, Oprean R, Bodoki E. Perspectives in the design of zein-based polymeric delivery systems with programmed wear down for sustainable agricultural applications. Polym Degrad Stabil. 2018;155:130–5. https://doi.org/10.1016/j.polymdegradstab.2018.07.014.
Article
CAS
Google Scholar
Liu Y, Li S, Li H, Alomgir HM, Sameen DE, Dai J, Qin W, Lee K. Synthesis and properties of core-shell thymol-loaded zein/shellac nanoparticles by coaxial electrospray as edible coatings. Mater Design. 2021;212:110214. https://doi.org/10.1016/J.MATDES.2021.110214.
Article
CAS
Google Scholar
Yuan Y, Ma M, Xu Y, Wang D. Surface coating of zein nanoparticles to improve the application of bioactive compounds: a review. Trends Food Sci Tech. 2022;120:1–15. https://doi.org/10.1016/J.TIFS.2021.12.025.
Article
CAS
Google Scholar
Chen L, Lin Y, Zhou H, Hao L, Chen H, Zhou X. A stable polyamine-modified zein-based nanoformulation with high foliar affinity and lowered toxicity for sustained avermectin release. Pest Manag Sci. 2021;77:3300–12. https://doi.org/10.1002/PS.6374.
Article
CAS
Google Scholar
Wang L, Ning C, Pan T, Cai K. Role of Silica Nanoparticles in abiotic and biotic stress tolerance in plants: a review. Int J Mol Sci. 2022;23:1947–1947. https://doi.org/10.3390/IJMS23041947.
Article
CAS
Google Scholar
Ku Y, Sintaha M, Cheung M, Lam H. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci. 2018;19:3206–3206. https://doi.org/10.3390/ijms19103206.
Article
CAS
Google Scholar
Ding Z, Kheir AM, Ali OA, Hafez EM, ElShamey EA, Zhou Z, Wang B, Ge Y, Fahmy AE, Seleiman MF. A vermicompost and deep tillage system to improve saline-sodic soil quality and wheat productivity. J Environ Manage. 2021;277:111388. https://doi.org/10.1016/j.jenvman.2020.111388.
Article
CAS
Google Scholar
Rajput VD, Singh RK, Verma KK, Sharma L, QuirozFigueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 2021;10:267–267. https://doi.org/10.3390/BIOLOGY10040267.
Article
CAS
Google Scholar
Rajput VD, Minkina T, Kumari A, Singh VK, Verma KK, Mandzhieva S, Sushkova S, Srivastava S, Keswani C. Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants. 2021;10:1221–1221. https://doi.org/10.3390/PLANTS10061221.
Article
CAS
Google Scholar
Singh A, Sengar RS, Rajput VD, Minkina T, Singh RK. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture. 2022;12:1014–1014. https://doi.org/10.3390/AGRICULTURE12071014.
Article
CAS
Google Scholar
Xie W, Chen Q, Wu L, Yang H, Xu J, Zhang Y. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: a 4-year field study. Soil Till Res. 2020;198:104535–104535. https://doi.org/10.1016/j.still.2019.104535.
Article
Google Scholar
Ali Q, Sehrai GH, Hussain Z, Sajid M, Abbas G, Salisu IB, Shahid AA. Genetically modified crops and their biosafety concerns. NY Sci J. 2017;10:128–60. https://doi.org/10.7537/marsnys100817.06.
Article
Google Scholar
Ashraf M, Munns R. Evolution of approaches to increase the salt tolerance of crops. Crit Rev Plant Sci. 2022;41:34–41. https://doi.org/10.1080/07352689.2022.2065136.
Article
Google Scholar
Cai XZ, Zheng Z. Biochemical mechanisms of salicylic acid—induced resistance rice seeding blast. Acta Phytopathol Sin. 1997;27:231–6.
CAS
Google Scholar
Wang YF, Xie L, He C, Ma C, Wu Y. Effects of iduction time and concentration of exogenous SA and MeJA on phenolic compounds in Gossypium spp leaves. Acta Agric Boreali Occident Sin. 2015;24:103–9. https://doi.org/10.7606/j.issn.1004-1389.2015.06.016.
Article
Google Scholar
Song WY, Peng SP, Shao CY, Shao HB, Yang HC. Ethylene glycol tetra-acetic acid and salicylic acid improve anti-oxidative ability of maize seedling leaves under heavy-metal and polyethylene glycol 6000-simulated drought stress. Plant Biosyst. 2014;148:96–108. https://doi.org/10.1080/11263504.2013.878408.
Article
Google Scholar
Wang Y, Zhang H, Hou P, Su X, Zhao P, Zhao H, Liu S. Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat during the grain filling stage by modulating the gene transcription and antioxidant defense. Plant Growth Regul. 2014;73:289–97. https://doi.org/10.1007/s10725-014-9889-9.
Article
CAS
Google Scholar
Zhang Q, Li D, Wang Q, Song X, Wang Y, Yang X, Qin D, Xie T, Yang D. Exogenous salicylic acid improves chilling tolerance in maize seedlings by improving plant growth and physiological characteristics. Agronomy. 2021;11:1341. https://doi.org/10.3390/AGRONOMY11071341.
Article
CAS
Google Scholar
Taherbahrani S, Zoufan P, Zargar B. Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L.. Environ Sci Pollut Res Int. 2021. https://doi.org/10.1007/S11356-021-15566-Y.
Article
Google Scholar
Li T, Hu Y, Xuhua Du, Tang H, Shen C, Wu J. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE. 2014;9:600. https://doi.org/10.1371/journal.pone.0109492.
Article
CAS
Google Scholar
Pirasteh-Anosheh H, Emam Y, Pessarakli M. Grain filling pattern of Hordeum vulgare as affected by salicylic acid and salt stress. J Plant Nutr. 2019;42:278–86. https://doi.org/10.1080/01904167.2018.1554680.
Article
CAS
Google Scholar
Mohammadi H, Rahimpour B, PirastehAnosheh H, Race M. Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. Int J Env Res Pub He. 2022;19:1576–1576. https://doi.org/10.3390/IJERPH19031576.
Article
CAS
Google Scholar
Larsen T, Fernández C. Enzymatic-fluorometric analyses for glutamine, glutamate and free amino groups in protein-free plasma and milk. J Dairy Res. 2017;84:32–5. https://doi.org/10.1017/S0022029916000789.
Article
CAS
Google Scholar
Huang JL, Wang XK. Principles and techniques of plant physiological biochemical experiment. 3rd ed. Beijing: Higher Education press; 2015.
Google Scholar
Bach-Pages M, Preston GM. Methods to quantify biotic-induced stress in plants. In: Medina C, López-Baena FJ, editors. Methods in molecular biology, vol. 1734. Clifton: Humana press; 2018. p. 241–55. https://doi.org/10.1007/978-1-4939-7604-1_19.
Chapter
Google Scholar
Yan L, Li P, Zhao X, Ji R, Zhao L. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci Total Environ. 2020;718:137400. https://doi.org/10.1016/j.scitotenv.2020.137400.
Article
CAS
Google Scholar
Tomba JP, Silva LI, García Genga M, Barrera Galland G, Perez CJ. Characterizing chemical composition of polyolefin-based copolymers from spectral features in the C-H stretching region. J Raman Spectrosc. 2019;50:2129–34. https://doi.org/10.1139/v68-347.
Article
Google Scholar
Freeman JM, Henshall T. Group vibrations and the vibrational analysis of molecules containing methylene groups. Part I. The basic equations and the application of the method to methylene dichloride and cyclopropane. Can J Chem. 1968;46:50. https://doi.org/10.1139/v68-347.
Article
Google Scholar
Abdolmohammad-Zadeh H, Salimi A. A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions. Front Chem Sci Eng. 2020;15:1–10. https://doi.org/10.1007/s11705-020-1930-0.
Article
CAS
Google Scholar
Xu C, Xie F, Guo X, Yang H. Synthesis and cofluorescence of Eu(Y) complexes with salicylic acid and o-phenanthroline. Spectrochim Acta Part A Mol Biomol Spectrosc. 2005;61:2005–8. https://doi.org/10.1016/j.saa.2004.07.034.
Article
CAS
Google Scholar
Meng D, Zhou H, Xu J, Zhang S. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin. Chem Phys. 2021;2021:111182. https://doi.org/10.1016/J.CHEMPHYS.2021.111182.
Article
Google Scholar
Gillgren T, Barker SA, Belton PS, Georget DMR, Stading M. Plasticization of zein: a thermomechanical, FTIR, and dielectric study. Biomacromol. 2009;10:1135–9.
Article
CAS
Google Scholar
Sadat A, Joye IJ. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl Sci. 2020;10:5918. https://doi.org/10.3390/app10175918.
Article
CAS
Google Scholar
Karaca C, Atac A, Karabacak M. Conformational analysis, spectroscopic study (FT-IR, FT-Raman, UV, 1H and 13C NMR), molecular orbital energy and NLO properties of 5-iodosalicylic acid. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;136:231–6. https://doi.org/10.1016/j.saa.2014.08.137.
Article
CAS
Google Scholar
Lu YB, Yang P, Huang WN, Yang YN, Wu JZ. 5-Formylsalicylic acid and 5-(benzimidazolium-2-yl)salicylate. Acta Crystallogr C. 2010;66:596–9. https://doi.org/10.1107/S0108270110044926.
Article
CAS
Google Scholar
Zhang X, Dong C, Hu Y, Gao M, Luan G. Zein as a structural protein in gluten-free systems: an overview. Food Sci Human Wellness. 2021;10:270–7. https://doi.org/10.1016/J.FSHW.2021.02.018.
Article
CAS
Google Scholar
Zhang J, Zhou W, Xu M, Fang C, Du Q, Xu X, Lyu F, Ding Y, Liu J. Characterization of silver carp myosin glycated with phosphorylated konjac oligo-glucomannan. J Sci Food Agr. 2021;101:6117–24. https://doi.org/10.1002/JSFA.11268.
Article
CAS
Google Scholar
Hood C, Laredo T, Marangoni AG, Pensini E. Water-repellent films from corn protein and tomato cutin. J Appl Polym Sci. 2021;138:50831. https://doi.org/10.1002/APP.50831.
Article
CAS
Google Scholar
Zhao M, Li P, Zhou H, Hao L, Chen H, Zhou X. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides. Chem Eng J. 2022;435:1. https://doi.org/10.1016/J.CEJ.2022.134861.
Article
Google Scholar
Liu Z, Cao X, Ren S, Wang J, Zhang H. Physicochemical characterization of a zein prepared using a novel aqueous extraction technology and tensile properties of the zein film. Ind Crops Prod. 2019;130:57–62. https://doi.org/10.1016/j.indcrop.2018.12.071.
Article
CAS
Google Scholar
Nguyen KT, Tran PH, Ngo HV, Tran TT. Hydrophobic and hydrophilic film-forming gels for the controlled delivery of drugs with different levels of hydrophobicity. Anticancer Agent Med Chem. 2021;21:2082–8. https://doi.org/10.2174/1871520621666201231141842.
Article
CAS
Google Scholar
Wang Q, Tang Y, Yang Y, Lei L, Lei X, Zhao J, Zhang Y, Li L, Wang Q, Ming J. Interactions and structural properties of zein/ferulic acid: the effect of calcium chloride. Food Chem. 2022;373:373. https://doi.org/10.1016/J.FOODCHEM.2021.131489.
Article
Google Scholar
Huang S, He J, Han L, Lin H, Liu G, Zhang W. Zein-polyglycerol conjugates with enhanced water solubility and stabilization of high oil loading emulsion. J Agr Food Chem. 2020;68:11810–6. https://doi.org/10.1021/acs.jafc.0c04156.
Article
CAS
Google Scholar
Zou Y, Zhong J, Pan R, Wan Z, Guo J, Wang J, Yin S, Yang X. Zein/tannic acid complex nanoparticles-stabilised emulsion as a novel delivery system for controlled release of curcumin. Int J Food Sci Technol. 2017;52:1221–8. https://doi.org/10.1111/ijfs.13380.
Article
CAS
Google Scholar
Schmidt G, Woods JT, Fung LXB, Gilpin CJ, Hamaker BR, Wilker JJ. Strong adhesives from corn protein and tannic acid. Adv Sustain Syst. 2019;3:1900077. https://doi.org/10.1002/adsu.201900077.
Article
CAS
Google Scholar
Zhang J, Yang J, Yang Y, Luo J, Zheng X, Wen C, Xu Y. Transcription factor CsWIN1 regulates pericarp wax biosynthesis in cucumber grafted on pumpkin. Front Plant Sci. 2019;10:1564. https://doi.org/10.3389/fpls.2019.01564.
Article
Google Scholar
Shafiq S, Akram NA, Ashraf M, GarcíaCaparrós P, Ali OM, Latef AA. Influence of glycine betaine (natural and synthetic) on growth, metabolism and yield production of drought-stressed maize (Zea mays L.) plants. Plants. 2021;10:2540–2540. https://doi.org/10.3390/PLANTS10112540.
Article
CAS
Google Scholar
Rajabi DA, Zahedi M, Ludwiczak A, Piernik A. Foliar application of salicylic acid improves salt tolerance of sorghum (Sorghum bicolor (L.) Moench). Plants. 2022;11:368–368. https://doi.org/10.3390/PLANTS11030368.
Article
Google Scholar
Abedini M, Hassani BD. Salicylic acid affects wheat cultivars antioxidant system under saline and non-saline condition. Russ J Plant Physiol. 2015;62:604–10. https://doi.org/10.1134/S1021443715050027.
Article
CAS
Google Scholar
Desoky ES, Merwad AR, Abo El-Maati MF, Mansour E, Arnaout SM, Awad MF, Ramadan MF, Ibrahim SA. Physiological and biochemical mechanisms of exogenously applied selenium for alleviating destructive impacts induced by salinity stress in bread wheat. Agronomy. 2021;11:926–926. https://doi.org/10.3390/AGRONOMY11050926.
Article
CAS
Google Scholar
Zamaninejad M, Khorasani SK, Moeini MJ, Heidarian AR. Effect of salicylic acid on morphological characteristics, yield and yield components of Corn (Zea mays L.) under drought condition. Eur J Exp Biol. 2013;3:153–61.
CAS
Google Scholar
Vakilian H, Andres RE, Habibi RL, Behmanesh M. Fabrication and optimization of linear PEI-modified crystal nanocellulose as an efficient non-viral vector for In-Vitro gene delivery. Rep Biochem Mol Biol. 2020;9:297–308. https://doi.org/10.29252/RBMB.9.3.297.
Article
CAS
Google Scholar
Qi C, Lin X, Li S, Liu L, Wang Z, Li Y, Bai R, Xie Q, Zhang N, Ren S, Zhao B. SoHSC70 positively regulates thermotolerance by alleviating cell membrane damage, reducing ROS accumulation, and improving activities of antioxidant enzymes. Plant Sci. 2019;283:385–95. https://doi.org/10.1016/j.plantsci.2019.03.003.
Article
CAS
Google Scholar
Liu Z, Ma C, Hou L, Wu X, Wang D, Zhang L, Liu P. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis. Int J Mol Sci. 2022;23:3293–3293. https://doi.org/10.3390/IJMS2306329.
Article
CAS
Google Scholar
Sundaria N, Singh M, Upreti P, Chauhan RP, Jaiswal JP, Kumar A. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. J Plant Growth Regul. 2019;38:122–31. https://doi.org/10.1007/s00344-018-9818-7.
Article
CAS
Google Scholar
Aydin A, Kurt F, Hürkan K. Key aromatic amino acid players in soybean (Glycine max) genome under drought and salt stresses. Biocatal Agric Biotechnol. 2021;35:102094. https://doi.org/10.1016/J.BCAB.2021.102094.
Article
CAS
Google Scholar
Bravo SA, Lamas MC, Salamón CJ. In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. J Pharm Pharm Sci. 2002;5:213–9. https://doi.org/10.1124/jpet.302.3.1295.
Article
CAS
Google Scholar
Alexa IF, Ignat M, Popovici RF, Timpu D, Popovici E. In vitro controlled release of antihypertensive drugs intercalated into unmodified SBA-15 and MgO modified SBA-15 matrices. Int J Pharm. 2012;436:111–9. https://doi.org/10.1016/j.ijpharm.2012.06.036.
Article
CAS
Google Scholar
Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36. https://doi.org/10.1016/0168-3659(87)90034-4.
Article
CAS
Google Scholar
Creed D. The photophysics and photochemistry of the near-UV absorbing amino acids-II. Tyrosine and its simple derivatives. Photochem Photobiol. 1984;39:577–83. https://doi.org/10.1111/j.1751-1097.1984.tb03891.x.
Article
CAS
Google Scholar
Wang Y, Padua GW. Nanoscale characterization of zein self-assembly. Langmuir. 2012;28:131489–131489. https://doi.org/10.1021/la204204j.
Article
CAS
Google Scholar
Briggs GG, Bromilow RH, Evans AA, Williams M. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci. 1982;13:495–504. https://doi.org/10.1002/ps.2780130506.
Article
CAS
Google Scholar
Ge J, Lu M, Wang D, Zhang Z, Liu X, Yu X. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake. Chemosphere. 2016;144:576–86. https://doi.org/10.1016/j.chemosphere.2015.08.072.
Article
CAS
Google Scholar
Zhu H, Chen L, Xing W, Ran S, Wei Z, Amee M, Wassie M, Niu H, Tang D, et al. Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: a novel strategy for strengthening of phytoremediation. J Hazard Mater. 2020;388:122080. https://doi.org/10.1016/j.jhazmat.2020.122080.
Article
CAS
Google Scholar
de Moura GF, de Souza PN, Campos FG, Mantoan LPB, Boaro CSF. Exogenous salicylic acid modifies gas exchange and biomass production of ’Mentha x piperita’ L. Aust J Crop Sci. 2020;14:98–107. https://doi.org/10.21475/ajcs.20.14.01.p1900.
Article
CAS
Google Scholar
Homayoonzadeh M, Esmaeily M, Talebi K, Allahyari H, Nozari J, Michaud JP. Micronutrient fertilization of greenhouse cucumbers mitigates pirimicarb resistance in Aphis gossypii (hemiptera: aphididae). J Econ Entomol. 2020;113:2864–72. https://doi.org/10.1093/JEE/TOAA202.
Article
CAS
Google Scholar
Hall A, Larsen AK, Parhamifar L, Meyle KD, Wu LP, Moghimi SM. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress Mitochondrial proton leak and inhibition of the electron transport system. Biochim Biophy Acta. 2013;1827:1213–25. https://doi.org/10.1016/j.bbabio.2013.07.001.
Article
CAS
Google Scholar
Khansarizadeh M, Mokhtarzadeh A, Rashedinia M, Taghdisi SM, Lari P, Abnous KH, Ramezani M. Identification of possible cytotoxicity mechanism of polyethylenimine by proteomics analysis. Hum Exp Toxicol. 2016;35:377–87. https://doi.org/10.1177/0960327115591371.
Article
CAS
Google Scholar
Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M. Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids. Int J Pharm. 2018;546:31–8. https://doi.org/10.1016/j.ijpharm.2018.05.021.
Article
CAS
Google Scholar
Hou XD, Liu QP, Smith TJ, Li N, Zong MH. Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids. PLoS ONE. 2017;8: e59145. https://doi.org/10.1371/journal.pone.0059145.
Article
CAS
Google Scholar