Alivisatos AP, Gu W, Larabell C: Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005, 7: 55-76. 10.1146/annurev.bioeng.7.060804.100432.
Article
CAS
Google Scholar
Liu BR, Huang YW, Chiang HJ, Lee HJ: Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. J Nanosci Nanotechnol. 2010, 10 (12): 7897-905. 10.1166/jnn.2010.3012.
Article
CAS
Google Scholar
Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T: Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008, 5 (9): 763-75. 10.1038/nmeth.1248.
Article
CAS
Google Scholar
Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY: Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev. 2010, 39 (11): 4234-43. 10.1039/c000682n.
Article
CAS
Google Scholar
Cho DY, Lin SZ, Yang WK, Hsu DM, Lin HL, Lee HC, Lee WY, Chiu SC: The Role of Cancer Stem Cells (CD133(+)) in Malignant Gliomas. Cell Transplant. 2011, 20 (1): 121-5. 10.3727/096368910X532774.
Article
Google Scholar
Ferrari M: Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005, 5 (3): 161-71. 10.1038/nrc1566.
Article
CAS
Google Scholar
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10 (5): 459-66. 10.1016/S1470-2045(09)70025-7.
Article
CAS
Google Scholar
Altman DA, Atkinson DS, Brat DJ: Best cases from the AFIP: glioblastoma multiforme. Radiographics. 2007, 27 (3): 883-8. 10.1148/rg.273065138.
Article
Google Scholar
Yamahara T, Numa Y, Oishi T, Kawaguchi T, Seno T, Asai A, Kawamoto K: Morphological and flow cytometric analysis of cell infiltration in glioblastoma: a comparison of autopsy brain and neuroimaging. Brain Tumor Pathol. 2010, 27 (2): 81-7. 10.1007/s10014-010-0275-7.
Article
Google Scholar
Hensel T, Amberger VR, Schwab ME: A metalloprotease activity from C6 glioma cells inactivates the myelin-associated neurite growth inhibitors and can be neutralized by antibodies. Br J Cancer. 1998, 78 (12): 1564-72. 10.1038/bjc.1998.724.
Article
CAS
Google Scholar
Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004, 64 (19): 7011-21. 10.1158/0008-5472.CAN-04-1364.
Article
CAS
Google Scholar
Ying M, Sang Y, Li Y, Guerrero-Cazares H, Quinones-Hinojosa A, Vescovi AL, Eberhart CG, Xia S, Laterra J: Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells. 2011, 29 (1): 20-31. 10.1002/stem.561.
Article
CAS
Google Scholar
Lasky JL, Choe M, Nakano I: Cancer stem cells in pediatric brain tumors. Curr Stem Cell Res Ther. 2009, 4 (4): 298-305. 10.2174/157488809789649278.
Article
CAS
Google Scholar
Burkhardt JK, Shin BJ, Boockvar JA: Neural stem cells and glioma stem-like cells respond differently to chemotherapeutic drugs: selectivity at the cellular level. Neurosurgery. 2011, 68 (6): N21-2. 10.1227/01.neu.0000398212.65736.e1.
Article
Google Scholar
Festa M, Del Valle L, Khalili K, Franco R, Scognamiglio G, Graziano V, De Laurenzi V, Turco MC, Rosati A: BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol. 2011, 178 (6): 2504-12. 10.1016/j.ajpath.2011.02.002.
Article
CAS
Google Scholar
Romano S, Di Pace A, Sorrentino A, Bisogni R, Sivero L, Romano MF: FK506 binding proteins as targets in anticancer therapy. Anticancer Agents Med Chem. 2010, 10 (9): 651-6.
Article
CAS
Google Scholar
Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, Hubaud A, Stadler B, Choi M, Bar M, Tewari M, Liu A, Vessella R, Rostomily R, Born D, Horwitz M, Ware C, Blau CA, Cleary MA, Rich JN, Ruohola-Baker H: HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011, 71 (13): 4640-52. 10.1158/0008-5472.CAN-10-3320.
Article
CAS
Google Scholar
Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S: Cancer stem cells in glioblastoma--molecular signaling and therapeutic targeting. Protein Cell. 2010, 1 (7): 638-55. 10.1007/s13238-010-0078-y.
Article
CAS
Google Scholar
Schleicher SM, Thotala DK, Linkous AG, Hu R, Leahy KM, Yazlovitskaya EM, Hallahan DE: Autotaxin and LPA receptors represent potential molecular targets for the radiosensitization of murine glioma through effects on tumor vasculature. PLoS One. 2011, 6 (7): e22182-10.1371/journal.pone.0022182.
Article
CAS
Google Scholar
Rognoni P, Chiarelli LR, Comincini S, Azzalin A, Miracco C, Valentini G: Biochemical signatures of doppel protein in human astrocytomas to support prediction in tumor malignancy. J Biomed Biotechnol. 2010, 2010: 301067-
Article
Google Scholar
Niu CS, Li DX, Liu YH, Fu XM, Tang SF, Li J: Expression of NANOG in human gliomas and its relationship with undifferentiated glioma cells. Oncol Rep. 2011, 26 (3): 593-601.
CAS
Google Scholar
Maysinger D, Lovrić J: Quantum dots and other fluorescent nanoparticles: quo vadis in the cell?. Adv Exp Med Biol. 2007, 620: 156-67. 10.1007/978-0-387-76713-0_12.
Article
Google Scholar
Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Medintz IL: Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin Drug Deliv. 2009, 6 (10): 1091-112. 10.1517/17425240903167934.
Article
CAS
Google Scholar
Torchilin VP: Nanocarriers. Pharm Res. 2007, 24 (12): 2333-4. 10.1007/s11095-007-9463-5.
Article
CAS
Google Scholar
Xiao Y, Forry SP, Gao X, Holbrook RD, Telford WG, Tona A: Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. J Nanobiotechnology. 2010, 8: 13-10.1186/1477-3155-8-13.
Article
Google Scholar
Derfus AM, Chan WCW, Bhatia SN: Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking. Advanced Materials. 2004, 16 (12): 961-6. 10.1002/adma.200306111.
Article
CAS
Google Scholar
Chen X, Kis A, Zettl A, Bertozzi CR: A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci USA. 2007, 104 (20): 8218-22. 10.1073/pnas.0700567104.
Article
CAS
Google Scholar
Delehanty JB, Mattoussi H, Medintz IL: Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem. 2009, 393 (4): 1091-105. 10.1007/s00216-008-2410-4.
Article
CAS
Google Scholar
Yum K, Na S, Xiang Y, Wang N, Yu MF: Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett. 2009, 9 (5): 2193-8. 10.1021/nl901047u.
Article
CAS
Google Scholar
Fonseca SB, Pereira MP, Kelley SO: Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 2009, 61 (11): 953-64. 10.1016/j.addr.2009.06.001.
Article
CAS
Google Scholar
Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J: Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006, 27 (29): 5143-50. 10.1016/j.biomaterials.2006.05.013.
Article
CAS
Google Scholar
Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, Serada S, Fujimoto M, Naka T, Futaki S, Harashima H: Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation. J Control Release. 2011, 143 (3): 311-7.
Article
Google Scholar
Serda RE, Mack A, van de Ven AL, Ferrati S, Dunner K, Godin B, Chiappini C, Landry M, Brousseau L, Liu X, Bean AJ, Ferrari M: Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles. Small. 2010, 6 (23): 2691-700. 10.1002/smll.201000727.
Article
CAS
Google Scholar
Bale SS, Kwon SJ, Shah DA, Banerjee A, Dordick JS, Kane RS: Nanoparticle-mediated cytoplasmic delivery of proteins to target cellular machinery. ACS Nano. 2010, 4 (3): 1493-500. 10.1021/nn901586e.
Article
CAS
Google Scholar
Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM: Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem. 2010, 2 (11): 962-6. 10.1038/nchem.858.
Article
CAS
Google Scholar
Taylor U, Klein S, Petersen S, Kues W, Barcikowski S, Rath D: Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry A. 2010, 77 (5): 439-46.
Google Scholar
Jiang X, Rocker C, Hafner M, Brandholt S, Dorlich RM, Nienhaus GU: Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano. 2010, 4 (11): 6787-97. 10.1021/nn101277w.
Article
CAS
Google Scholar
Contreras J, Xie J, Chen YJ, Pei H, Zhang G, Fraser CL, Hamm-Alvarez SF: Intracellular uptake and trafficking of difluoroboron dibenzoylmethane-polylactide nanoparticles in HeLa cells. ACS Nano. 2010, 4 (5): 2735-47. 10.1021/nn901385y.
Article
CAS
Google Scholar
Febvay S, Marini DM, Belcher AM, Clapham DE: Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano Lett. 2010, 10 (6): 2211-9. 10.1021/nl101157z.
Article
CAS
Google Scholar
Krpetic Z, Nativo P, See V, Prior IA, Brust M, Volk M: Inflicting controlled nonthermal damage to subcellular structures by laser-activated gold nanoparticles. Nano Lett. 2010, 10 (11): 4549-54. 10.1021/nl103142t.
Article
CAS
Google Scholar
Kadiu I, Nowacek A, McMillan J, Gendelman HE: Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond). 2010
Google Scholar
Dudu V, Ramcharan M, Gilchrist ML, Holland EC, Vazquez M: Liposome delivery of quantum dots to the cytosol of live cells. J Nanosci Nanotechnol. 2008, 8 (5): 2293-300. 10.1166/jnn.2008.185.
Article
CAS
Google Scholar
Verma IM, Weitzman MD: Gene therapy: twenty-first century medicine. Annu Rev Biochem. 2005, 74: 711-38. 10.1146/annurev.biochem.74.050304.091637.
Article
CAS
Google Scholar
Chen L, Zurita AJ, Ardelt PU, Giordano RJ, Arap W, Pasqualini R: Design and validation of a bifunctional ligand display system for receptor targeting. Chem Biol. 2004, 11 (8): 1081-91. 10.1016/j.chembiol.2004.05.019.
Article
CAS
Google Scholar
Dixit SK, Goicochea NL, Daniel MC, Murali A, Bronstein L, De M, Stein B, Rotello VM, Kao CC, Dragnea B: Quantum dot encapsulation in viral capsids. Nano Lett. 2006, 6 (9): 1993-9. 10.1021/nl061165u.
Article
CAS
Google Scholar
Li F, Li K, Cui ZQ, Zhang ZP, Wei HP, Gao D, Deng JY, Zhang XE: Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small. 2010, 6 (20): 2301-8. 10.1002/smll.201001078.
Article
CAS
Google Scholar
Mann MJ, Morishita R, Gibbons GH, von der Leyen HE, Dzau VJ: DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HVJ)-liposomes. Mol Cell Biochem. 1997, 172 (1-2): 3-12.
Article
CAS
Google Scholar
Kaneda Y: Applications of Hemagglutinating Virus of Japan in therapeutic delivery systems. Expert Opin Drug Deliv. 2008, 5 (2): 221-33. 10.1517/17425247.5.2.221.
Article
CAS
Google Scholar
Tozawa H, Watanabe M, Ishida N: Structural components of Sendai virus. Serological and physicochemical characterization of hemagglutinin subunit associated with neuraminidase activity. Virology. 1973, 55 (1): 242-53. 10.1016/S0042-6822(73)81027-X.
Article
CAS
Google Scholar
Homma M, Ouchi M: Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J Virol. 1973, 12 (6): 1457-65.
CAS
Google Scholar
Scheid A, Choppin PW: Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology. 1974, 57 (2): 475-90. 10.1016/0042-6822(74)90187-1.
Article
CAS
Google Scholar
Bodey B, Kaiser HE, Siegel SE: Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo. 2005, 19 (5): 931-41.
CAS
Google Scholar
Izycka-Swieszewska E, Brzeskwiniewicz M, Wozniak A, Drozynska E, Grajkowska W, Perek D, Balcerska A, Klepacka T, Limon J: EGFR, PIK3CA and PTEN gene status and their protein product expression in neuroblastic tumours. Folia Neuropathol. 2010, 48 (4): 238-45.
CAS
Google Scholar
Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R: Epidermal growth factor receptor - mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res. 2006, 12 (24): 7261-70. 10.1158/1078-0432.CCR-06-0874.
Article
CAS
Google Scholar
Sabharwal N, Holland EC, Vazquez M: Live cell labeling of glial progenitor cells using targeted quantum dots. Ann Biomed Eng. 2009, 37 (10): 1967-73. 10.1007/s10439-009-9703-4.
Article
Google Scholar
Dudu V, Rotari V, Vazquez M: Targeted extracellular nanoparticles enable intracellular detection of activated epidermal growth factor receptor in living brain cancer cells. Nanomedicine. 2011, 7 (6): 896-903. 10.1016/j.nano.2011.05.002.
Article
CAS
Google Scholar
Zhang C, Li A, Zhang X, Xiao H: A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem. 2011, 286 (11): 9373-81. 10.1074/jbc.M110.207720.
Article
CAS
Google Scholar
Ying H, Zheng H, Scott K, Wiedemeyer R, Yan H, Lim C, Huang J, Dhakal S, Ivanova E, Xiao Y, Zhang H, Hu J, Stommel JM, Lee MA, Chen AJ, Paik JH, Segatto O, Brennan C, Elferink LA, Wang YA, Chin L, DePinho RA: Mig-6 controls EGFR trafficking and suppresses gliomagenesis. Proc Natl Acad Sci USA. 2010, 107 (15): 6912-7. 10.1073/pnas.0914930107.
Article
CAS
Google Scholar
Wiley HS, Herbst JJ, Walsh BJ, Lauffenburger DA, Rosenfeld MG, Gill GN: The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor. J Biol Chem. 1991, 266 (17): 11083-94.
CAS
Google Scholar
Bhattacharyya S, Bhattacharya R, Curley S, McNiven MA, Mukherjee P: Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA. 2010, 107 (33): 14541-6. 10.1073/pnas.1006507107.
Article
CAS
Google Scholar
Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC: Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA. 2011, 108 (5): 1850-5. 10.1073/pnas.1011379108.
Article
CAS
Google Scholar
Van de Broek B, Devoogdt N, D'Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G: Specific Cell Targeting with Nanobody Conjugated Branched Gold Nanoparticles for Photothermal Therapy. ACS Nano. 2011
Google Scholar
Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6 (4): 669-76. 10.1021/nl052405t.
Article
CAS
Google Scholar
Williams D, Foye W, Lemke T: Foye's Principles of Medicinal Chemistry. 2002, Publisher: Lippincott Williams & Wilkins, Fifth
Google Scholar
Misra R, Acharya S, Sahoo SK: Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today. 2010, 15 (19-20): 842-50. 10.1016/j.drudis.2010.08.006.
Article
CAS
Google Scholar
Yang K, Cao YA, Shi C, Li ZG, Zhang FJ, Yang J, Zhao C: Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice. Oral Oncol. 2010, 46 (12): 864-8. 10.1016/j.oraloncology.2010.09.009.
Article
Google Scholar
Juzenas P, Juzeniene A, Iani V, Moan J: Depth profile of protoporphyrin IX fluorescence in an amelanotic mouse melanoma model. Photochem Photobiol. 2009, 85 (3): 760-4. 10.1111/j.1751-1097.2008.00496.x.
Article
CAS
Google Scholar
Smith AM, Ruan G, Rhyner MN, Nie S: Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng. 2006, 34 (1): 3-14. 10.1007/s10439-005-9000-9.
Article
Google Scholar
Ramirez O, Garcia A, Rojas R, Couve A, Hartel S: Confined displacement algorithm determines true and random colocalization in fluorescence microscopy. J Microsc. 2010, 239 (3): 173-83. 10.1111/j.1365-2818.2010.03369.x.
Article
CAS
Google Scholar