Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A. 2008;25:241–58.
Article
CAS
Google Scholar
Puddu M, Paunescu D, Stark WJ, Grass RN. Magnetically recoverable, thermostable, hydrophobic DNA/silica encapsulates and their application as invisible oil tags. ACS Nano. 2014;8:2677–85.
Article
CAS
Google Scholar
Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JTN, Ehrensperger F, et al. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat Nanotechnol. 2010;5:374–80.
Article
CAS
Google Scholar
US FDA 2015. United States Food and Drug Administration. Code of Federal Regulations Title 21, 21CFR172.480. 2015. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=172.480. Accessed 25 Apr 2016.
Union European. Commission regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off J Eur Union. 2011;295:1–177.
Google Scholar
Union European. Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union. 2011;275:38–40.
Google Scholar
Oberdörster G. Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc A Math Phys Eng Sci. 2000;358:2719–40.
Article
Google Scholar
Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58:211–6.
Article
CAS
Google Scholar
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.
Article
Google Scholar
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39:9370–6.
Article
CAS
Google Scholar
Lankveld DPK, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol. 2010;598:401–23.
Article
CAS
Google Scholar
Landsiedel R, Fabian E, Ma-Hock L, van Ravenzwaay B, Wohlleben W, Wiench K, et al. Toxico-/biokinetics of nanomaterials. Arch Toxicol. 2012;86:1021–60.
Article
CAS
Google Scholar
Mou Y, Chen B, Zhang Y, Hou Y, Xie H, Xia G, et al. Influence of synthetic superparamagnetic iron oxide on dendritic cells. Int J Nanomedicine. 2011;6:1779–86.
CAS
Google Scholar
Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7:39.
Article
CAS
Google Scholar
European Union. Comission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. Off J Eur Union. 2012;2012(83):1–295.
Google Scholar
Marinova KG, Denkov ND, Branlard P, Giraud Y, Deruelle M. Optimal hydrophobicity of silica in mixed oil-silica antifoams. Langmuir. 2002;18:3399–403.
Article
CAS
Google Scholar
Wang P, Zhu Y, Yang X, Chen A. Prolonged-release performance of perfume encapsulated by tailoring mesoporous silica spheres. Flavour Fragr J. 2008;23:29–34.
Article
Google Scholar
Dekkers S, Krystek P, Peters RJB, Lankveld DPK, Bokkers BGH, van Hoeven-Arentzen PH, et al. Presence and risks of nanosilica in food products. Nanotoxicology. 2011;5:393–405.
Article
CAS
Google Scholar
Fruijtier-Pölloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology. 2012;294.
Maynard AD. Old materials, new challenges? Nat Nanotechnol. 2014;9:658–9.
Article
CAS
Google Scholar
SCENIHR 2007. Scientific Committee on Emerging and Newly-Identified Health Risks. The existing and proposed definitions relating to products of nanotechnologies, 29 November 2007. http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_012.pdf. Accessed 25 Apr 2016.
ELC 2009. Federation of European Food Additives; Food enzymes and food cultures industries. food additives and nanotechnologies. 2009. http://elc-eu.org/uploads/news_documents/2009-10_Food_additives_and_nanotechnologies_-_ELC_position.pdf. Accessed 25 Apr 2016.
ECETOC 2006. European Centre for Ecotoxicology and Toxicology of Chemicals. Synthetic Amorphous Silica (CAS No. 7631-86-9), JACC REPORT No. 51. 2006. http://members.ecetoc.org/Documents/Document/JACC051.pdf. Accessed 25 Apr 2016.
OECD 2015. Organization for economic co-operation and development. Dossier on silicon dioxide, Series on the safety of manufactured nanomaterials No. 51. 2015. http://www.oecd.org/chemicalsafety/nanosafety/silicon-dioxide-manufactured-nanomaterial.htm. Accessed 25 Apr 2016.
Lewin G. 28-day oral toxicity study of synthetic amorphous silica in wistar (WU) rats. CEFIC, Brussels, Belgium. 2011. Unpublished report, described in OECD 2015. http://www.oecd.org/chemicalsafety/nanosafety/silicon-dioxide-manufactured-nanomaterial.htm. Accessed 25 Apr 2016.
Elsea JR. Cab-O-Sil (fluffy), ninety-day dietary feeding, supplement to progress reports dated January 8, and May 6, 1958, final report. Hazleton Laboratories, Falls Church, Virginia. Cabot, Tuscula, Illinois, USA. 1958. Unpublished report, described in SCCS 2015. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_175.pdf. Accessed 25 Apr 2016.
Til H, Hollanders M, Beems R. Subchronic (13 week) oral toxicity study in rats. Evonik Degussa, Germany. 1981. Unpublished report, described in OECD 2015. http://www.oecd.org/chemicalsafety/nanosafety/silicon-dioxide-manufactured-nanomaterial.htm. Accessed 25 Apr 2016.
Rutter HA, Shott LD. 13-week dietary administration - rats, silane-treated Cab-O-Sil, final report, project 178-114. Hazleton Laboratories, Falls Church, Virginia. Cabot, Billerica, MA, USA. 1970. Unpublished report, described in ECETOC 2006. http://members.ecetoc.org/Documents/Document/JACC051.pdf. Accessed 25 Apr 2016.
Leuschner F. Über die subakute Toxizität von R972. Degussa, Hanau, Germany. 1964. Unpublished report, desribed in ECETOC 2006. http://members.ecetoc.org/Documents/Document/JACC 051.pdf. Accessed 25 Apr 2016.
Pliess G. Histologische Befunde bei Versuchsratten, Medikament R972. Laboratorium für Pharmakologie und Toxikologie, Hamburg, Germany. Degussa, Frankfurt am Main, Germany. 1964. Unpublished report, described in ECETOC 2006. http://members.ecetoc.org/Documents/Document/JACC051.pdf. Accessed 25 Apr 2016.
So SJ, Jang IS, Han CS. Effect of micro/nano silica particle feeding for mice. J Nanosci Nanotechnol. 2008;8:5367–71.
Article
CAS
Google Scholar
van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8.
Article
Google Scholar
Takizawa Y, Hirasawa F, Noritomi E, Aida M, Tsunoda H, Uesugi S. Oral ingestion of syloid to mice and rats and its chronic toxicity and carcinogenicity. Acta Med Biol. 1988;36:27–56.
CAS
Google Scholar
UK Food Standards Agency 2003. Safe upper levels for vitamins and minerals: report of the expert group on vitamins and minerals. 2003. http://cot.food.gov.uk/sites/default/files/vitmin2003.pdf. Accessed 25 Apr 2016.
SCCS 2015. Scientific Committee on Consumer Safety. Opinion on silica, hydrated silica, and silica surface modified with alkyl silylates (nano form). 2015. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_175.pdf. Accessed 25 Apr 2016.
van Kesteren PCE, Cubadda F, Bouwmeester H, van Eijkeren JCH, Dekkers S, de Jong WH, et al. Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food. Nanotoxicology. 2015;9:442–52.
Article
Google Scholar
NANOGENOTOX 2013. Facilitating the safety evaluation of manufactured nanomaterials by characterising their potential genotoxic hazard. 2013. http://www.nanogenotox.eu/index.php?option=com_content&view=article&id=136&Itemid=158. Accessed 25 Apr 2016.
Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.
Article
CAS
Google Scholar
Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C. Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett. 2012;208:41–50.
Article
CAS
Google Scholar
Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104:2050–5.
Article
CAS
Google Scholar
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008;105:14265–70.
Article
CAS
Google Scholar
Nagayama S, Ogawara KI, Fukuoka Y, Higaki K, Kimura T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm. 2007;342:215–21.
Article
CAS
Google Scholar
Kistemaker C, Bouman M, Hulshof K. Consumption of separate products by Dutch population groups-Dutch National Food Consumption Survey 1997–1998. Zeist, TNO-Nutrition Food Res Institute, TNO-report. 1998;98:812.
Peters R, Kramer E, Oomen AG, Herrera Rivera ZE, Oegema G, Tromp PC, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano. 2012;6:2441–51.
Article
CAS
Google Scholar
Warheit DB. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci. 2008;101:183–5.
Article
CAS
Google Scholar
European Food Safety Authority. Scientific opinion of the panel on food additives and nutrient sources added to food on calcium silicate, silicon dioxide and silicic acid gel added for nutritional purposes to food supplements following a request from the European Commission. EFSA J. 2009;1132:1–24.
Google Scholar
European Food Safety Authority. Opinion of the Scientific Panel on Dietetic Products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of silicon (Request N° EFSA-Q-2003-018). EFSA J. 2004;60:1–11.
Google Scholar
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.
Article
CAS
Google Scholar
Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, et al. Origin of the lamina propria dendritic cell network. Immunity. 2009;31:513–25.
Article
CAS
Google Scholar
Sass W, Dreyer HP, Seifert J. Rapid insorption of small particles in the gut. Am J Gastroenterol. 1990;85:255–60.
CAS
Google Scholar
des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.
Article
CAS
Google Scholar
Awaad A, Nakamura M, Ishimura K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine. 2012;8:627–36.
CAS
Google Scholar
Powell JJ, Thomas-McKay E, Thoree V, Robertson J, Hewitt RE, Skepper JN, et al. An endogenous nanomineral chaperones luminal antigen and peptidoglycan to intestinal immune cells. Nat Nanotechnol. 2015;10:361–9.
Article
CAS
Google Scholar
Bekiaris V, Persson EK, Agace WW. Intestinal dendritic cells in the regulation of mucosal immunity. Immunol Rev. 2014;260:86–101.
Article
CAS
Google Scholar
Toda T, Yoshino S. Amorphous nanosilica particles block induction of oral tolerance in mice. J Immunotoxicol. 2016;18:1–6.
Article
Google Scholar
Evans SM, Ashwood P, Warley A, Berisha F, Thompson RPH, Powell JJ. The role of dietary microparticles and calcium in apoptosis and interleukin-1β release of intestinal macrophages. Gastroenterology. 2002;123:1543–53.
Article
CAS
Google Scholar
Lomer MCE, Thompson RPH, Powell JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc. 2002;61:123–30.
Article
Google Scholar
Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–5.
Article
CAS
Google Scholar
Lucendo AJ, De Rezende LC. Importance of nutrition in inflammatory bowel disease. World J Gastroenterol. 2009;15:2081–8.
Article
CAS
Google Scholar
Bates J, Diehl L. Dendritic cells in IBD pathogenesis: an area of therapeutic opportunity? J Pathol. 2014;232:112–20.
Article
CAS
Google Scholar
Rescigno M. Before they were gut dendritic cells. Immunity. 2009;31:454–6.
Article
CAS
Google Scholar
Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182:389–400.
Article
CAS
Google Scholar
Steinman RM, Lustig DS, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med. 1974;139:1431–45.
Article
CAS
Google Scholar
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.
Article
CAS
Google Scholar
Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–13.
Article
CAS
Google Scholar
Li A, Qin L, Zhu D, Zhu R, Sun J, Wang S. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials. 2010;31:748–56.
Article
Google Scholar
Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface. 2010;7(Suppl 1):S27–40.
Article
Google Scholar
Winter M, Beer H-D, Hornung V, Krämer U, Schins RPF, Förster I. Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology. 2011;5:326–40.
Article
CAS
Google Scholar
Tetley TD. Health effects of nanomaterials. Biochem Soc Trans. 2007;35:527–31.
Article
CAS
Google Scholar
Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34:J226–33.
Article
CAS
Google Scholar
Hummel TZ, Kindermann A, Stokkers PCF, Benninga MA, ten Kate FJW. Exogenous pigment in Peyer patches of children suspected of having IBD. J Pediatr Gastroenterol Nutr. 2014;58:477–80.
Article
Google Scholar
Zolnik BS, González-Fernández Á, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010;151:458–65.
Article
CAS
Google Scholar