Geng H, Xu Y, Zheng L, Gong H, Dai L, Dai X. An overview of removing heavy metals from sewage sludge: achievements and perspectives. Environ Pollut. 2020;266:115375.
Article
CAS
PubMed
Google Scholar
Yuan J, Lu Y, Wang C, Cao X, Chen C, Cui H, et al. Ecology of industrial pollution in China. Ecosyst Health Sustain. 2020;6:1779010.
Article
Google Scholar
Zhang Y, Wang B, Cheng Q, Li X, Li Z. Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: a review. J Nanosci Nanotechnol. 2020;20:7231–54.
Article
CAS
PubMed
Google Scholar
Zhang Y, Wu D, Wang C, Fu X, Wu G. Impact of coal power generation on the characteristics and risk of heavy metal pollution in nearby soil. Ecosyst Health Sustain. 2020;6:1787092.
Article
Google Scholar
Chen S-Y, Li Z, Li K, Yu X-Q. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev. 2021;429:213691.
Article
CAS
Google Scholar
Farzin L, Shamsipur M, Sheibani S. A review: aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta. 2017;174(619):627.
Google Scholar
Wang L, Peng X, Fu H, Huang C, Li Y, Liu Z. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food. Biosens Bioelectron. 2020;147:111777.
Article
CAS
PubMed
Google Scholar
Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res. 2020. https://doi.org/10.1007/s11356-020-07865-7.
Article
Google Scholar
Hao Y, Wu X, Guo Y. Study on test and detection method of mechanical properties of heavy metal contaminated soil. Soil and Sedi Contam. 2020;29:929–39.
Article
CAS
Google Scholar
Zhang L, Peng D, Liang RP, Qiu JD. Graphene-based optical nanosensors for detection of heavy metal ions. TrAC, Trends Anal Chem. 2018;102:280–9.
Article
CAS
Google Scholar
Liu X, Yu K, Zhang H, Zhang X, Zhang H, Zhang J, et al. A portable electromagnetic heating-microplasma atomic emission spectrometry for direct determination of heavy metals in soil. Talanta. 2020;219:121348.
Article
CAS
PubMed
Google Scholar
Pyo J, Hong S, Kwon Y, Kim MS, Cho KH. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci Total Environ. 2020;741:140162.
Article
CAS
PubMed
Google Scholar
Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC, Trends Anal Chem. 2018;100:155–66.
Article
CAS
Google Scholar
Duan C, Fang L, Yang C, Chen W, Cui Y, Li S. Reveal the response of enzyme activities to heavy metals through in situ zymography. Ecotoxicol Environ Saf. 2018;156:106–15.
Article
CAS
PubMed
Google Scholar
Li C, Ma J, Shi H, Hu X, Xiang Y, Li Y, et al. Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies. Anal Chim Acta. 2018;1041:102–7.
Article
CAS
PubMed
Google Scholar
Selvaraj U, Venu-Babu P, Thilagaraj WR. Application of H412R mutant alkaline phosphatase for removal of heavy metals from single-ion solutions and effluents. Int J Environ Sci Technol. 2018;16:1329–36.
Article
CAS
Google Scholar
Ali MH, Elsherbiny ME, Emara M. Updates on aptamer research. Int J Mol Sci. 2019;20:2511.
Article
CAS
PubMed Central
Google Scholar
Wang T, Chen C, Larcher L, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37:28–50.
Article
CAS
PubMed
Google Scholar
Poolsup S, Kim C-Y. Therapeutic applications of synthetic nucleic acid aptamers. Curr Opin Biotechnol. 2017;48:180–6.
Article
CAS
PubMed
Google Scholar
Zhang Y, Lai BS, Juhas M. Recent advances in aptamer discovery and applications. Molecules. 2019;24:941.
Article
PubMed Central
CAS
Google Scholar
Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y, Xiong Y, et al. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-Acid targets. J Am Chem Soc. 2020;142:207–13.
Article
CAS
PubMed
Google Scholar
Babu E, Bhuvaneswari J, Mareeswaran PM, Thanasekaran P, Lee H-M, Rajagopal S. Transition metal complexes based aptamers as optical diagnostic tools for disease proteins and biomolecules. Coord Chem Rev. 2019;380:519–49.
Article
CAS
Google Scholar
Ding J, Qin W. Recent advances in potentiometric biosensors. TrAC Trends Anal Chem. 2020;124:115803.
Article
CAS
Google Scholar
Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, et al. Aptasensors for pesticide detection. Biosens Bioelectron. 2019;130:174–84.
Article
CAS
PubMed
Google Scholar
Alkhamis O, Canoura J, Yu H, Liu Y, Xiao Y. Innovative engineering and sensing strategies for aptamer-based small-molecule detection. TrAC Trends Anal Chem. 2019;121:115699.
Article
CAS
Google Scholar
Liu B, Liu J. Sensors and biosensors based on metal oxide nanomaterials. TrAC Trends Anal Chem. 2019;121:115690.
Article
CAS
Google Scholar
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, et al. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron. 2020;148:111785.
Article
CAS
PubMed
Google Scholar
Chen X, Zhao Y, Zhao X, Wu J, Zhu L, Zhang X, et al. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor. J Hazard Mater. 2020;398:122858.
Article
CAS
PubMed
Google Scholar
Liu Y, Deng Y, Dong H, Liu K, He N. Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Sci China Chem. 2016;60:329–37.
Article
CAS
Google Scholar
Lan L, Yao Y, Ping J, Ying Y. Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces. 2017;9:23287–301.
Article
CAS
PubMed
Google Scholar
Li L, Xing H, Zhang J, Lu Y. Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Acc Chem Res. 2019;52:2415–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranjan S, Dasgupta N, Lichtfouse E. Nanopackaging in food and electronics. Berlin: Springer International Publishing; 2017.
Google Scholar
Sahai N, Gogoi M, Ahmad N. Mathematical modeling and simulations for developing nanoparticle-based cancer drug delivery systems: a review. Curr Pathobiol Rep. 2021;9:1–8.
Article
Google Scholar
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, et al. Advances in aptamer screening technologies. Talanta. 2019;200:124–44.
Article
CAS
PubMed
Google Scholar
Liu Q, Wang H, Han P, Feng X. Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal-organic frameworks. Analyst. 2019;144:6025–32.
Article
CAS
PubMed
Google Scholar
Komarova N, Andrianova M, Glukhov S, Kuznetsov A. Selection, characterization, and application of ssDNA aptamer against furaneol. Molecules. 2018;23:3159.
Article
PubMed Central
CAS
Google Scholar
Ho LSJ, Fogel R, Limson JL. Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. Talanta. 2020;208:120474.
Article
CAS
Google Scholar
Luo Z, He L, Wang J, Fang X, Zhang L. Developing a combined strategy for monitoring the progress of aptamer selection. Analyst. 2017;142:3136–9.
Article
CAS
PubMed
Google Scholar
Boussebayle A, Groher F, Suess B. RNA-based capture-SELEX for the selection of small molecule-binding aptamers. Methods. 2019;161:10–5.
Article
CAS
PubMed
Google Scholar
Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev. 2017;117:8272–325.
Article
CAS
PubMed
Google Scholar
Chatterjee B, Kalyani N, Anand A, Khan E, Das S, Bansal V, et al. GOLD SELEX: a novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Microchim Acta. 2020;187:618.
Article
CAS
Google Scholar
Munzar JD, Ng A, Juncker D. Duplexed aptamers: history, design, theory, and application to biosensing. Chem Soc Rev. 2019;48:1390–419.
Article
CAS
PubMed
Google Scholar
Saito S. SELEX-based DNA aptamer selection: a perspective from the advancement of separation techniques. Anal Sci. 2021;37:17–26.
Article
CAS
PubMed
Google Scholar
Yan S-R, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, et al. A review: recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol. 2020;155:184–207.
Article
CAS
PubMed
Google Scholar
Green R, Ellington AD, Szostak JW. In vitro genetic analysis of the Tetrahymena self-splicing intron. Nature. 1990;347:406–8.
Article
CAS
PubMed
Google Scholar
Wang J, Wang Q, Luo Y, Gao T, Zhao Y, Pei R. In vitro selection of ssDNA aptamers that can specifically recognize and differentiate riboflavin and its derivative FAD. Talanta. 2019;204:424–30.
Article
CAS
PubMed
Google Scholar
Chinnappan R, Eissa S, Alotaibi A, Siddiqua A, Alsager OA, Zourob M. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal Chim Acta. 2020;1101:149–56.
Article
CAS
PubMed
Google Scholar
Wu X, Diao D, Lu Z, Han Y, Xu S, Lou X. Phthalic acid ester-binding DNA aptamer selection, characterization, and application to an electrochemical aptasensor. J Vis Exp. 2018;133:e56814.
Google Scholar
Chen Y, Ding X, Zhu D, Lin X, Xie Z. Preparation and evaluation of highly hydrophilic aptamer-based hybrid affinity monolith for on-column specific discrimination of ochratoxin A. Talanta. 2019;200:193–202.
Article
CAS
PubMed
Google Scholar
Rajendran M, Ellington AD. Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal Bioanal Chem. 2008;390:1067–75.
Article
CAS
PubMed
Google Scholar
Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta. 2016;154:498–503.
Article
CAS
PubMed
Google Scholar
Chen Y, Li H, Gao T, Zhang T, Xu L, Wang B, et al. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II). Sens Actuators, B Chem. 2018;254:214–21.
Article
CAS
Google Scholar
Wu Y, Zhan S, Wang L, Zhou P. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst. 2014;139:1550–61.
Article
CAS
PubMed
Google Scholar
Kim M, Um HJ, Bang S, Lee S-H, Oh S-J, Han J-H, et al. Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer. Environ Sci Technol. 2009;43:9335–40.
Article
CAS
PubMed
Google Scholar
Wrzesinski J, Ciesiolka J. Characterization of structure and metal ions specificity of CO2+-binding RNA aptamers. Biochemistry. 2005;44:6257–68.
Article
CAS
PubMed
Google Scholar
Xing L, Zhang Y, Yang J. Graphene oxide-assisted non-immobilized SELEX of chiral drug ephedrine aptamers and the analytical binding mechanism. Biochem Biophys Res Commun. 2019;514:134–9.
Article
CAS
PubMed
Google Scholar
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, et al. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;247:119038.
Article
CAS
Google Scholar
Cho YS, Lee EJ, Lee G-H, Hah SS. Aptamer selection for fishing of palladium ion using graphene oxide-adsorbed nanoparticles. Bioorg Med Chem Lett. 2015;25:5536–9.
Article
CAS
PubMed
Google Scholar
Liu C, Li Y, Xiong C, Nie Z. Development of capillary-paper spray for small-molecule analysis in complex samples. Anal Bioanal Chem. 2021;413:1099–106.
Article
CAS
PubMed
Google Scholar
Zeng Y, Liang D, Zheng P, Zhang Y, Wang Z, Mari GM, et al. A simple and rapid immunochromatography test based on readily available filter paper modified with chitosan to screen for 13 sulfonamides in milk. J Dairy Sci. 2021;104:126–33.
Article
CAS
PubMed
Google Scholar
Prabu SS, Ch’ng ES, Woon PY, Chen J-H, Tang T-H, Citartan M. Unravelling the diagnostic and therapeutic potentialities of a novel RNA aptamer isolated against human pituitary tumour transforming gene 1 (PTTG1) protein. Anal Chim Acta. 2020;1138:181–90.
Article
CAS
PubMed
Google Scholar
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.
Article
CAS
PubMed
Google Scholar
Kawakami J, Imanaka H, Yokota Y, Sugimoto N. In vitro selection of aptamers that act with Zn2+. J Inorg Biochem. 2000;82:197–206.
Article
CAS
PubMed
Google Scholar
Ranjbar B, Gill P. Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des. 2009;74:101–20.
Article
CAS
PubMed
Google Scholar
Kim R, Youn Y-S, Kang M, Kim E. Platform-and label-free detection of lead ions in environmental and laboratory samples using G-quadraplex probes by circular dichroism spectroscopy. Sci Rep. 2020;10:20461.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Zhou L, Deng L, Feng Z, Cao Z, Yin Y. An electrochemical impedimetric sensing platform based on a peptide aptamer identified by high-throughput molecular docking for sensitive L-arginine detection. Bioelectrochemistry. 2021;137:107634.
Article
CAS
PubMed
Google Scholar
Liu X, Hou Y, Chen S, Liu J. Controlling dopamine binding by the new aptamer for a FRET-based biosensor. Biosens Bioelectron. 2020;173:112798.
Article
PubMed
CAS
Google Scholar
Li Y, Ran G, Lu G, Ni X, Liu D, Sun J, et al. Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of cadmium (II) ions. J Electrochem Soc. 2019;166:B449–55.
Article
CAS
Google Scholar
Ran G, Wu F, Ni X, Li X, Li X, Liu D, et al. A novel label-free electrochemical aptasensor with one-step assembly process for rapid detection of lead (II) ions. Sens Actuators B Chem. 2020;320:128326.
Article
CAS
Google Scholar
Gordon CKL, Eisenstein M, Soh HT. Direct selection strategy for isolating aptamers with pH-sensitive binding activity. ACS Sens. 2018;3:2574–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu H, Csordas AT, Wang J, Oh SS, Eisenstein MS, Soh HT. Rapid and label-free strategy to isolate aptamers for metal ions. ACS Nano. 2016;10:7558–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohaddeseh HM, Jaber JS. A molecular dynamics study proposing the existence of structural interaction between cancer cell receptor and RNA aptamer. J Inorg Organomet Polym Mater. 2020;30:4520–32.
Article
CAS
Google Scholar
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. Theoretical design and experimental study of new aptamers with the improved target-affinity: new insights into the Pb2+-specific aptamers as a case study. J Mol Liq. 2019;289:111159.
Article
CAS
Google Scholar
Chen Y, Zhu Q, Zhou X, Wang R, Yang Z. Reusable, facile, and rapid aptasensor capable of online determination of trace mercury. Environ Int. 2021;146:106181.
Article
CAS
PubMed
Google Scholar
Zhang N, Liu B, Cui X, Li Y, Tang J, Wang H, et al. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta. 2021;223:121729.
Article
CAS
PubMed
Google Scholar
Kaur H, Shorie M. Nanomaterial based aptasensors for clinical and environmental diagnostic applications. Nanoscale Advances. 2019;1:2123–38.
Article
CAS
Google Scholar
Acha ND, Elosúa C, Corres JM, Arregui FJ. Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors. 2019;19:599.
Article
CAS
PubMed Central
Google Scholar
Aloisi A, Torre AD, Benedetto AD, Rinaldi R. Bio-recognition in spectroscopy-based biosensors for *heavy metals-water and waterborne contamination analysis. Biosensors. 2019;9:96.
Article
CAS
PubMed Central
Google Scholar
Berlina AN, Zherdev AV, Dzantiev BB. Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Mikrochim Acta. 2019;186:172.
Article
PubMed
CAS
Google Scholar
Devi P, Thakur A, Lai RY, Saini S, Jain R, Kumar P. Progress in the materials for optical detection of arsenic in water. TrAC, Trends Anal Chem. 2019;110:97–115.
Article
CAS
Google Scholar
Zhou Y, Mahapatra C, Chen H, Peng X, Ramakrishna S, Nanda HS. Recent developments in fluorescent aptasensors for detection of antibiotics. Curr Opin Biomed Eng. 2020;13:16–24.
Article
Google Scholar
Taghdisi SM, Danesh NM, Lavaee P, Ramezani M, Abnous K. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles. Environ Toxicol Pharmacol. 2015;39:1206–11.
Article
CAS
PubMed
Google Scholar
Yang D, Liu X, Zhou Y, Luo L, Zhang J, Huang A, et al. Aptamer-based biosensors for detection of lead(II) ion: a review. Anal Methods. 2017;9:1976–90.
Article
CAS
Google Scholar
Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H. A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer. Anal Chim Acta. 2014;812:161–7.
Article
CAS
PubMed
Google Scholar
Wang Y, Lv M, Chen Z, Deng Z, Liu N, Fan J, et al. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions. Front Chem. 2020;8:238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouyang H, Ling S, Liang A, Jiang Z. A facile aptamer-regulating gold nanoplasmonic SERS detection strategy for trace lead ions. Sens Actuators, B Chem. 2018;258:739–44.
Article
CAS
Google Scholar
Tao Z, Zhou Y, Duan N, Wang Z. A colorimetric aptamer sensor based on the enhanced peroxidase activity of functionalized graphene/Fe3O4-AuNPs for detection of lead (II) ions. Catalysts. 2020;10:600.
Article
CAS
Google Scholar
Wu Y, Shi Y, Deng S, Wu C, Deng R, He G, et al. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea. Food Chem. 2021;343:128425.
Article
CAS
PubMed
Google Scholar
Ma L-H, Wang H-B, Fang B-Y, Tan F, Cao Y-C, Zhao Y-D. Visual detection of trace lead ion based on aptamer and silver staining nano-metal composite. Colloids Surf, B. 2018;162:415–9.
Article
CAS
Google Scholar
Ahmad N, Bhatnagar S, Ali SS, Dutta R. Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomed. 2015;10:7019–30.
CAS
Google Scholar
Yuan M, Song Z, Fei J, Wang X, Xu F, Cao H, et al. Aptasensor for lead(II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchim Acta. 2017;184:1397–403.
Article
CAS
Google Scholar
Yu L, Zhao H, Jing N, Shi X, Zhang Y, Ding C, et al. A supramolecular probe of cyanine dye for Pb2+ detection based on the recognition of a G-quadruplex from DNA duplexes. Anal Methods. 2020;12:1182–5.
Article
CAS
Google Scholar
Chung E, Gao R, Ko J, Choi N, Lim DW, Lee EK, et al. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip. 2013;13:260–6.
Article
CAS
PubMed
Google Scholar
Kosturko LD, Folzer C, Stewart RF. The crystal and molecular structure of a 2:1 complex of 1-methylthymine-mercury(II). Biochemistry. 1974;13:3949–52.
Article
CAS
PubMed
Google Scholar
Qi Y, Xiu F-R, Yu G, Huang L, Li B. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron. 2017;87:439–46.
Article
CAS
PubMed
Google Scholar
Qi Y, Ma J, Chen X, Xiu F, Chen Y, Lu Y. Practical aptamer-based assay of heavy metal mercury ion in contaminated environmental samples: convenience and sensitivity. Anal Bioanal Chem. 2020;412:439–48.
Article
CAS
PubMed
Google Scholar
Wang C, Tang G, Tan H. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Mikrochim Acta. 2018;185:475.
Article
PubMed
CAS
Google Scholar
Wu Y, Yue Y, Deng S, He G, Gao H, Zhou M, et al. Ratiometric-enhanced G-quadruplex probes for amplified and mix-to-read detection of mercury pollution in aquatic products. J Agric Food Chem. 2020;68:12124–31.
Article
CAS
PubMed
Google Scholar
Caglayan MO. Plasmon resonance-enhanced internal reflection ellipsometry for the trace detection of mercuric ion. Int J Environ Sci Technol. 2017;15:909–14.
Article
CAS
Google Scholar
Sun C, Sun R, Chen Y, Tong Y, Zhu J, Bai H, et al. Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food. Sens Actuators, B Chem. 2018;255:775–80.
Article
CAS
Google Scholar
Shi Y, Li W, Feng X, Lin L, Nie P, Shi J, et al. Sensing of mercury ions in Porphyra by Copper @ Gold nanoclusters based ratiometric fluorescent aptasensor. Food Chem. 2021;344:128694.
Article
CAS
PubMed
Google Scholar
Bhardiya SR, Asati A, Sheshma H, Rai A, Rai VK, Singh M. A novel bioconjugated reduced graphene oxide-based nanocomposite for sensitive electrochemical detection of cadmium in water. Sens Actuators, B. 2021;328:129019.
Article
CAS
Google Scholar
Hasan MN, Salman MS, Islam A, Znad H, Hasan MM. Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater. Microchem J. 2021;161:105800.
Article
CAS
Google Scholar
Xue Y, Wang Y, Wang S, Yan M, Huang J, Yang X. Label-free and regenerable aptasensor for real-time detection of cadmium(II) by dual polarization interferometry. Anal Chem. 2020;92:10007–15.
Article
CAS
PubMed
Google Scholar
Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, et al. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta. 2020;208:120231.
Article
CAS
PubMed
Google Scholar
Ahmad N, Bhatnagar S, Saxena R, Iqbal D, Ghosh AK, Dutta R. Biosynthesis and characterization of gold nanoparticles: Kinetics, in vitro and in vivo study. Mater Sci Eng, C. 2017;78:553–64.
Article
CAS
Google Scholar
Zhu Y-F, Wang Y-S, Zhou B, Yu J-H, Peng L-L, Huang Y-Q, et al. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal Bioanal Chem. 2017;409:4951–8.
Article
CAS
PubMed
Google Scholar
Zeng L, Gong J, Rong P, Liu C, Chen J. A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta. 2019;198:412–6.
Article
CAS
PubMed
Google Scholar
Bacon JR, Butler OT, Cairns WRL, Cook JM, Davidson CM, Cavoura O, et al. Atomic spectrometry update—a review of advances in environmental analysis. J Anal At Spectrom. 2020;35:9–53.
Article
CAS
Google Scholar
Siddiqui MF, Khan ZA, Jeon H, Park S. SPE based soil processing and aptasensor integrated detection system for rapid on site screening of arsenic contamination in soil. Ecotoxicol Environ Saf. 2020;196:110559.
Article
CAS
PubMed
Google Scholar
Nguyen N, Park CY, Park JP, Kailasa SK, Park TJ. Synergistic molecular assembly of an aptamer and surfactant on gold nanoparticles for the colorimetric detection of trace levels of As3+ ions in real samples. New J Chem. 2018;42:11530–8.
Article
Google Scholar
Zeng L, Zhou D, Gong J, Liu C, Chen J. Highly sensitive aptasensor for trace arsenic(III) detection using DNAzyme as the biocatalytic amplifier. Anal Chem. 2019;91:1724–7.
Article
CAS
PubMed
Google Scholar
Zhang Z, Lei K, Li C, Luo Y, Jiang Z. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;232:118174.
Article
CAS
Google Scholar
Li J, Xi H, Kong C, Liu Q, Chen Z. “Aggregation-to-deaggregation” colorimetric signal amplification strategy for Ag+ detection at the femtomolar level with dark-field microscope observation. Anal Chem. 2018;90:11723–7.
Article
CAS
PubMed
Google Scholar
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron. 2018;116:130–47.
Article
CAS
PubMed
Google Scholar
Khoshbin Z, Housaindokht MR, Verdian A. A low-cost paper-based aptasensor for simultaneous trace-level monitoring of mercury (II) and silver (I) ions. Anal Biochem. 2020;597:113689.
Article
CAS
PubMed
Google Scholar
Lu Z, Wang P, Xiong W, Qi B, Shi R, Xiang D, et al. Simultaneous detection of mercury (II), lead (II) and silver (I) based on fluorescently labelled aptamer probes and graphene oxide. Environ Technol. 2020. https://doi.org/10.1080/09593330.2020.1721565.
Article
PubMed
Google Scholar
Lu Z, Xiong W, Wang P, Li X, Zhai K, Shi R, et al. Simultaneous detection of lead (II) and mercury (II) ions using nucleic acid aptamer molecular beacons. Int J Environ Anal Chem. 2019. https://doi.org/10.1080/03067319.2019.1691183.
Article
Google Scholar
Feng D, Li P, Tan X, Wu Y, Wei F, Du F, et al. Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode. Anal Chim Acta. 2020;1100:232–9.
Article
CAS
PubMed
Google Scholar
Wang J, Wang J, Zhou P, Tao H, Wang X, Wu Y. Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn3O4 nanoparticles for colorimetric detection of heavy metals. Mikrochim Acta. 2020;187:99.
Article
CAS
PubMed
Google Scholar
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta. 2019;1051:1–23.
Article
CAS
PubMed
Google Scholar
Shen Z, He L, Cao Y, Hong F, Zhang K, Hu F, et al. Multiplexed electrochemical aptasensor for antibiotics detection using metallic-encoded apoferritin probes and double stirring bars-assisted target recycling for signal amplification. Talanta. 2019;197:491–9.
Article
CAS
PubMed
Google Scholar
Zhu C, Liu D, Li Y, Ma S, Wang M, You T. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosens Bioelectron. 2021;174:112654.
Article
CAS
PubMed
Google Scholar
Li Z, Mohamed MA, Mohan AMV, Zhu Z, Sharma V, Mishra GK, et al. Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring: review. Sensors. 2019;19:5435.
Article
CAS
PubMed Central
Google Scholar
Sahai N, Ahmad N, Gogoi M. Nanoparticles based drug delivery for tissue regeneration using biodegradable scaffolds: a review. Curr Pathobiol Rep. 2018;6:219–24.
Article
CAS
Google Scholar
Nan M-N, Bi Y, Xue H-L, Long H-T, Xue S-L, Pu L-M, et al. Modification performance and electrochemical characteristics of different groups of modified aptamers applied for label-free electrochemical impedimetric sensors. Food Chem. 2021;337:127761.
Article
CAS
PubMed
Google Scholar
Liu Y, Deng Y, Li T, Chen Z, Chen H, Li S, et al. Aptamer-based electrochemical biosensor for mercury ions detection using AuNPs-modified glass carbon electrode. J Biomed Nanotechnol. 2018;14:2156–61.
Article
CAS
PubMed
Google Scholar
Si X, Tang S, Wang K, Zhou G, Xia J, Zhao Y, et al. Electrochemical amplification for Hg(II) quantification by anchoring an enzymatically extended aptamer. Anal Lett. 2019;52:2883–95.
Article
CAS
Google Scholar
Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: challenges and possibilities. ACS Omega. 2020;5:12583–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diaz-Amaya S, Lin L-K, DiNino RE, Ostos C, Stanciu LA. Inkjet printed electrochemical aptasensor for detection of Hg2+ in organic solvents. Electrochim Acta. 2019;316:33–42.
Article
CAS
Google Scholar
Khatoon A, Khan F, Ahmad N, Shaikh S, Rizvi SMD, Shakil S, et al. Silver nanoparticles from leaf extract of Mentha piperita: Eco-friendly synthesis and effect on acetylcholinesterase activity. Life Sci. 2018;209:430–4.
Article
CAS
PubMed
Google Scholar
Yu SH, Lee C-S, Kim TH. Electrochemical detection of ultratrace lead ion through attaching and detaching DNA aptamer from electrochemically reduced graphene oxide electrode. Nanomaterials. 2019;9:817.
Article
CAS
PubMed Central
Google Scholar
Ding J, Zhang D, Liu Y, Yu M, Zhan X, Zhang D, et al. An electrochemical aptasensor for detection of lead ions using a screen-printed carbon electrode modified with Au/polypyrrole composites and toluidine blue. Anal Methods. 2019;11:4274–9.
Article
CAS
Google Scholar
Tang W, Yu J, Wang Z, Jeerapan I, Yin L, Zhang F, et al. Label-free potentiometric aptasensing platform for the detection of Pb2+ based on guanine quadruplex structure. Anal Chim Acta. 2019;1078:53–9.
Article
CAS
PubMed
Google Scholar
Jin H, Zhang D, Liu Y, Wei M. An electrochemical aptasensor for lead ion detection based on catalytic hairpin assembly and porous carbon supported platinum as signal amplification. RSC Adv. 2020;10:6647–53.
Article
CAS
Google Scholar
Wang X, Gao W, Yan W, Li P, Zou H, Wei Z, et al. A novel aptasensor based on graphene/graphite carbon nitride nanocomposites for cadmium detection with high selectivity and sensitivity. ACS Appl Nano Mater. 2018;1:2341–6.
Article
CAS
Google Scholar
Mushiana T, Mabuba N, Idris AO, Peleyeju GM, Orimolade BO, Nkosi D, et al. An aptasensor for arsenic on a carbon-gold bi-nanoparticle platform. Sens Bio-Sens Res. 2019;24:100280.
Article
Google Scholar
Yadav R, Kushwah V, Gaur MS, Bhadauria S, Berlina AN, Zherdev AV, et al. Electrochemical aptamer biosensor for As3+ based on apta deep trapped Ag–Au alloy nanoparticles-impregnated glassy carbon electrode. Int J Environ Anal Chem. 2019;100:623–34.
Article
CAS
Google Scholar
Gu H, Yang Y, Chen F, Liu T, Jin J, Pan Y, et al. Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification. Chem Eng J. 2018;353:305–10.
Article
CAS
Google Scholar
Wu Y, Lai RY. Electrochemical gold(III) sensor with high sensitivity and tunable dynamic range. Anal Chem. 2016;88:2227–33.
Article
CAS
PubMed
Google Scholar
Zhang Z, Ji H, Song Y, Zhang S, Wang M, Jia C, et al. Fe(III)-based metal-organic framework-derived core-shell nanostructure: sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens Bioelectron. 2017;94:358–64.
Article
CAS
PubMed
Google Scholar
Mayne L, Lin C-Y, Christie SDR, Siwy ZS, Platt M. The design and characterisation of multifunctional aptamer nanopore sensors. ACS Nano. 2018;12:4844–52.
Article
CAS
PubMed
Google Scholar
Abu-Ali H, Nabok A, Smith TJ. Development of novel and highly specific ssDNA-aptamer-based electrochemical biosensor for rapid detection of mercury (II) and lead (II) ions in water. Chemosensors. 2019;7:27.
Article
CAS
Google Scholar
Wu F, Wu Y, Niu Z, Vollmer F. Integrating a DNA strand displacement reaction with a whispering gallery mode sensor for label-free mercury (II) ion detection. Sensors. 2016;16:1197.
Article
CAS
PubMed Central
Google Scholar
Wang C, Cui X, Li Y, Li H, Huang L, Bi J, et al. A label-free and portable graphene FET aptasensor for children blood lead detection. Sci Rep. 2016;6:21711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharifi A, Hallaj R, Bahar S, Babamiri B. Indirect determination of mercury(II) by using magnetic nanoparticles, CdS quantum dots and mercury(II)-binding aptamers, and quantitation of released CdS by graphite furnace AAS. Mikrochim Acta. 2020;187:91.
Article
CAS
PubMed
Google Scholar
Wang H, Liu Y, Liu G. Reusable resistive aptasensor for Pb(II) based on the Pb(II)-induced despiralization of a DNA duplex and formation of a G-quadruplex. Mikrochim Acta. 2018;185:142.
Article
PubMed
CAS
Google Scholar
Vu C-A, Chen W-Y. Predicting future prospects of aptamers in field-effect transistor biosensors. Molecules. 2020;25:680.
Article
CAS
PubMed Central
Google Scholar
Nguyen DK, Jang CH. Label-free liquid crystal-based detection of As(III) ions using ssDNA as a recognition probe. Microchem J. 2020;156:104834.
Article
CAS
Google Scholar
Ertan T, Caglayan MO. An ellipsometric biosensor using aptamer for the detection of mercuric ions. Chem Pap. 2020;75:89–97.
Article
CAS
Google Scholar
Chen T, Wang H, Wang Z, Tan M. Construction of time-resolved luminescence nanoprobe and its application in As(III) detection. Nanomaterials. 2020;10:551.
Article
CAS
PubMed Central
Google Scholar
Liu C-W, Tsai T-C, Osawa M, Chang H-C, Yang R-J. Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal Chim Acta. 2018;1033:137–47.
Article
CAS
PubMed
Google Scholar
Ehzari H, Safari M, Shahlaei M. A new sensing strategy based on thymine bases–Hg2+–methylene blue coordination on the electrospun PES–QDs platform for detection of Hg2+ in fruit juice samples. J Iran Chem Soc. 2019;16:2269–79.
Article
CAS
Google Scholar