Jun YW, Seo JW, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res. 2008;41:179–89.
CAS
PubMed
Google Scholar
McCarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond). 2007;2:153–67.
CAS
Google Scholar
Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK. Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed Engl. 2005;44:1068–71.
CAS
PubMed
Google Scholar
Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266–305.
CAS
PubMed
PubMed Central
Google Scholar
Shin TH, Lee DY, Manavalan B, Basith S, Na Y-C, Yoon C, Lee H-S, Paik MJ, Lee G. Silica-coated magnetic nanoparticles activate microglia and induce neurotoxic d-serine secretion. Part Fibre Toxicol. 2021;18:30.
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine. 2018;13:1221–38.
CAS
PubMed
Google Scholar
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine. 2018;13:929–52.
CAS
PubMed
Google Scholar
Bianchi ME, Manfredi AA. How macrophages ring the inflammation alarm. Proc Natl Acad Sci U S A. 2014;111:2866–7.
CAS
PubMed
PubMed Central
Google Scholar
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.
CAS
PubMed
PubMed Central
Google Scholar
Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.
CAS
PubMed
Google Scholar
Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, Lee KH, Sohn BH, Park SB, Lee JK, Cho MH. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci. 2006;7:321–6.
PubMed
PubMed Central
Google Scholar
Hacker C, Asadi J, Pliotas C, Ferguson S, Sherry L, Marius P, Tello J, Jackson D, Naismith J, Lucocq JM. Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy. Sci Rep. 2016;6:25275.
CAS
PubMed
PubMed Central
Google Scholar
Wilson SM, Bacic A. Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes. Nat Protoc. 2012;7:1716–27.
CAS
PubMed
Google Scholar
Wei Q, Xiaohua H, Bin K, Mostafa AE-S. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. J Biomed Opt. 2010;15:1–9. https://doi.org/10.1117/1.3477179.
Article
CAS
Google Scholar
Gu Y, Sun W, Wang G, Fang N. Single particle orientation and rotation tracking discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. J Am Chem Soc. 2011;133:5720–3.
CAS
PubMed
Google Scholar
Chiu C, Moss CF. The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. J Acoust Soc Am. 2007;121:2227–35.
PubMed
Google Scholar
Marchuk K, Fang N. Three-dimensional orientation determination of stationary anisotropic nanoparticles with sub-degree precision under total internal reflection scattering microscopy. Nano Lett. 2013;13:5414–9.
CAS
PubMed
Google Scholar
Zhang P, Lee S, Yu H, Fang N, Kang SH. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation. Sci Rep. 2015;5:11447.
PubMed
PubMed Central
Google Scholar
Zhang P, Kim K, Lee S, Chakkarapani SK, Fang N, Kang SH. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm. Sci Rep. 2016;6:32863.
PubMed
PubMed Central
Google Scholar
Chakkarapani SK, Sun Y, Lee S, Fang N, Kang SH. Three-dimensional orientation of anisotropic plasmonic aggregates at intracellular nuclear indentation sites by integrated light sheet super-resolution microscopy. ACS Nano. 2018;12:4156–63.
CAS
PubMed
Google Scholar
Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.
CAS
PubMed
PubMed Central
Google Scholar
van der Zwaag D, Vanparijs N, Wijnands S, De Rycke R, De Geest BG, Albertazzi L. Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl Mater Interfaces. 2016;8:6391–9.
PubMed
Google Scholar
Li Y, Shang L, Nienhaus GU. Super-resolution imaging-based single particle tracking reveals dynamics of nanoparticle internalization by live cells. Nanoscale. 2016;8:7423–9.
CAS
PubMed
Google Scholar
Dodgson J, Chessel A, Cox S, Carazo Salas RE. Super-resolution microscopy: SIM, STED and localization microscopy. In: Dahms TES, Czymmek KJ, editors. Advanced microscopy in mycology. Cham: Springer International Publishing; 2015. p. 47–60. https://doi.org/10.1007/978-3-319-22437-4_3.
Chapter
Google Scholar
Komis G, Šamajová O, Ovečka M, Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–43.
CAS
PubMed
Google Scholar
Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143:1047–58.
CAS
PubMed
PubMed Central
Google Scholar
Chakkarapani SK, Park G, Kang SH. Base pair distance analysis in single DNA molecule by direct stochastic optical reconstruction microscopy. Chin Chem Lett. 2015;26:1490–5.
CAS
Google Scholar
Lee S, Batjikh I, Kang SH. Toward sub-diffraction imaging of single-DNA molecule sensors based on stochastic switching localization microscopy. Sensors (Basel). 2020. https://doi.org/10.3390/s20226667.
Article
PubMed
PubMed Central
Google Scholar
Chakkarapani SK, Lee S, Lee G, Kang SH. Real-time intracellular Mg2+ signaling and wave propagation by subdiffraction-limit super-resolution microscopy. Bull Korean Chem Soc. 2015;36:2589–95.
CAS
Google Scholar
Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 2002;62:682–7 (PMID: 11830520).
CAS
PubMed
Google Scholar
Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci. 2003;100:7075–80.
CAS
PubMed
PubMed Central
Google Scholar
Menter JM. Temperature dependence of collagen fluorescence. Photochem Photobiol Sci. 2006;5:403–10.
CAS
PubMed
Google Scholar
Hoshino Y, Lee H, Miura Y. Interaction between synthetic particles and biomacromolecules: fundamental study of nonspecific interaction and design of nanoparticles that recognize target molecules. Polym J. 2014;46:537–45.
CAS
Google Scholar
Beck GR Jr, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine. 2012;8:793–803.
CAS
PubMed
Google Scholar
Han SJ, Choi S-E, Yi S-A, Jung JG, Jung I-R, Shin M, Kang S, Oh H, Kim HJ, Kim DJ, et al. Glutamate dehydrogenase activator BCH stimulating reductive amination prevents high fat/high fructose diet-induced steatohepatitis and hyperglycemia in C57BL/6J mice. Sci Rep. 2016;6:37468.
Google Scholar
Meyer J, Lacotte S, Morel P, Gonelle-Gispert C, Bühler L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp Cell Res. 2016;349:291–301.
CAS
PubMed
Google Scholar
Cabral F, Miller CM, Kudrna KM, Hass BE, Daubendiek JG, Kellar BM, Harris EN. Purification of hepatocytes and sinusoidal endothelial cells from mouse liver perfusion. J Vis Exp. 2018;132:56993.
Google Scholar
Chakkarapani SK, Zhang P, Ahn S, Kang SH. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125. Biosens Bioelectron. 2016;81:23–31.
CAS
PubMed
Google Scholar
Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods. 2014;11:267–79.
CAS
PubMed
Google Scholar
Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014;11:253–66.
CAS
PubMed
Google Scholar
Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810.
CAS
PubMed
PubMed Central
Google Scholar
Ketebo AA, Shin TH, Jun M, Lee G, Park S. Effect of silica-coated magnetic nanoparticles on rigidity sensing of human embryonic kidney cells. J Nanobiotechnol. 2020;18:170.
CAS
Google Scholar
Shin TH, Lee DY, Ketebo AA, Lee S, Manavalan B, Basith S, Ahn C, Kang SH, Park S, Lee G. Silica-coated magnetic nanoparticles decrease human bone marrow-derived mesenchymal stem cell migratory activity by reducing membrane fluidity and impairing focal adhesion. Nanomaterials. 2019;9:1475.
CAS
PubMed Central
Google Scholar
Shim W, Paik MJ, Nguyen DT, Lee JK, Lee Y, Kim JH, Shin EH, Kang JS, Jung HS, Choi S, et al. Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles. ACS Nano. 2012;6:7665–80.
CAS
PubMed
Google Scholar
Phukan G, Shin TH, Shim JS, Paik MJ, Lee JK, Choi S, Kim YM, Kang SH, Kim HS, Kang Y, et al. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro. Sci Rep. 2016;6:29095.
CAS
PubMed
PubMed Central
Google Scholar
Shin TH, Seo C, Lee DY, Ji M, Manavalan B, Basith S, Chakkarapani SK, Kang SH, Lee G, Paik MJ, Park CB. Silica-coated magnetic nanoparticles induce glucose metabolic dysfunction in vitro via the generation of reactive oxygen species. Arch Toxicol. 2019;93:1201–12.
CAS
PubMed
Google Scholar
Shin TH, Ketebo AA, Lee DY, Lee S, Kang SH, Basith S, Manavalan B, Kwon DH, Park S, Lee G. Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles. J Nanobiotechnol. 2021;19:21.
CAS
Google Scholar
Mazidi H, Ding T, Nehorai A, Lew MD. Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy. Nat Commun. 2020;11:6353.
CAS
PubMed
PubMed Central
Google Scholar
Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13:125–38.
CAS
PubMed
Google Scholar
Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–28.
CAS
PubMed
PubMed Central
Google Scholar
Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, Meyerson M, Pellman D. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.
CAS
PubMed
PubMed Central
Google Scholar
Zondervan R, Kulzer F, Orlinskii SB, Orrit M. Photoblinking of rhodamine 6G in poly (vinyl alcohol): radical dark state formed through the triplet. J Phys Chem A. 2003;107:6770–6.
CAS
Google Scholar
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.
CAS
PubMed
Google Scholar
Ocaña-Guzman R, Vázquez-Bolaños L, Sada-Ovalle I. Receptors that inhibit macrophage activation: mechanisms and signals of regulation and tolerance. J Immunol Res. 2018;2018:8695157.
PubMed
PubMed Central
Google Scholar
Phagocytosis GS. An immunobiologic process. Immunity. 2016;44:463–75.
Google Scholar
Rocker C, Potzl M, Zhang F, Parak WJ, Nienhaus GU. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4:577–80.
PubMed
Google Scholar
Park KS, Tae J, Choi B, Kim YS, Moon C, Kim SH, Lee HS, Kim J, Kim J, Park J, et al. Characterization, in vitro cytotoxicity assessment, and in vivo visualization of multimodal, RITC-labeled, silica-coated magnetic nanoparticles for labeling human cord blood-derived mesenchymal stem cells. Nanomedicine. 2010;6:263–76.
CAS
PubMed
Google Scholar
Tkachenko AG, Xie H, Liu Y, Coleman D, Ryan J, Glomm WR, Shipton MK, Franzen S, Feldheim DL. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem. 2004;15:482–90.
CAS
PubMed
Google Scholar
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:5.
Google Scholar
Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, Tochigi S, Kondoh S, Hirai T, Akase T, et al. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Pharmazie. 2010;65:199–201 (PMID: 20383940).
CAS
PubMed
Google Scholar
Mirshafiee V, Sun B, Chang CH, Liao Y-P, Jiang W, Jiang J, Liu X, Wang X, Xia T, Nel AE. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano. 2018;12:3836–52.
CAS
PubMed
PubMed Central
Google Scholar
Li J, Wang X, Mei K-C, Chang CH, Jiang J, Liu X, Liu Q, Guiney LM, Hersam MC, Liao Y-P, et al. Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. Nano Today. 2021;37: 101061.
CAS
PubMed
Google Scholar
Wang X, Chang CH, Jiang J, Liu X, Li J, Liu Q, Liao Y-P, Li L, Nel AE, Xia T. Mechanistic differences in cell death responses to metal-based engineered nanomaterials in Kupffer cells and hepatocytes. Small. 2020;16:2000528.
CAS
Google Scholar
Park J-K, Utsumi T, Seo Y-E, Deng Y, Satoh A, Saltzman WM, Iwakiri Y. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomed Nanotechnol Biol Med. 2016;12:1365–74.
CAS
Google Scholar
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5:60.
CAS
PubMed
PubMed Central
Google Scholar
Fenech M, Knasmueller S, Bolognesi C, Holland N, Bonassi S, Kirsch-Volders M. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res/Rev Mutat Res. 2020;786: 108342.
CAS
Google Scholar
Shin TH, Lee DY, Lee HS, Park HJ, Jin MS, Paik MJ, Manavalan B, Mo JS, Lee G. Integration of metabolomics and transcriptomics in nanotoxicity studies. BMB Rep. 2018;51:14–20.
CAS
PubMed
PubMed Central
Google Scholar