Chi Z, Liu G-L, Liu C-G, Chi Z-M. Poly (β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Applied Microbiol Biotechnol. 2016;10:841–51.
Google Scholar
Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM. Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol. 2016;36:99–107.
Article
CAS
PubMed
Google Scholar
Zhang J, Chen D, Liang G, Xu W, Tao Z. Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine. Trends Biochem Sci. 2021;46:213–24.
Article
CAS
PubMed
Google Scholar
Loyer P, Cammas-Marion S. Natural and synthetic poly (malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers. J Drug Target. 2014;22:556–75.
Article
CAS
PubMed
Google Scholar
Shimada K, Matsushima K, Fukumoto J, Yamamoto T. Poly-(L)-malic acid; a new protease inhibitor from Penicillium cyclopium. Biochem Biophys Res Commun. 1969;35:619–24.
Article
CAS
PubMed
Google Scholar
Fischer H, Erdmann S, Holler E. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase alpha in vitro. Biochemistry. 1989;28:5219–26.
Article
CAS
PubMed
Google Scholar
Holler E, Achhammer G, Angerer B, Gantz B, Hambach C, Reisner H, Seidel B, Weber C, Windisch C, Braud C, et al. Specific inhibition of Physarum polycephalum DNA-polymerase-alpha-primase by poly(l-malate) and related polyanions. Eur J Biochem. 1992;206:1–6.
Article
CAS
PubMed
Google Scholar
Lee BS, Vert M, Holler E. Water-soluble Aliphatic Polyesters: Poly(malic acid)s. In: Steinbüchel A (Ed.) Biopolymers Online. 2005. https://doi.org/10.1002/3527600035.bpol3a03.
Zou X, Cheng C, Feng J, Song X, Lin M, Yang ST. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol. 2019;39:408–21.
Article
CAS
PubMed
Google Scholar
Zhang Y, Feng J, Wang P, Xia J, Li X, Zou X. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Gene. 2019;709:8–16.
Article
CAS
PubMed
Google Scholar
Wang K, Chi Z, Liu G-L, Qi C-Y, Jiang H, Hu Z, Chi Z-M. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921. Int J Biol Macromol. 2020;156:1053–63.
Article
PubMed
CAS
Google Scholar
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev. 2017;113:177–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee B-S, Maurer T, Kalbitzer HR, Holler E. β-Poly (l-malate) production by Physarum polycephalum. Appl Microbiol Biotechnol. 1999;52:415–20.
Article
CAS
Google Scholar
Vert M. Chemical routes to poly (β-malic acid) and potential applications of this water-soluble bioresorbable poly (β-hydroxy alkanoate). Polym Degrad Stab. 1998;59:169–75.
Article
CAS
Google Scholar
Kajiyama T, Kobayashi H, Taguchi T, Kataoka K, Tanaka J. Improved synthesis with high yield and increased molecular weight of Poly(α, β-malic acid) by direct polycondensation. Biomacromolecules. 2004;5:169–74.
Article
CAS
PubMed
Google Scholar
Kajiyama T, Taguchi T, Kobayashi H, Kataoka K, Tanaka J. Synthesis of high molecular weight poly(α, β-malic acid) for biomedical use by direct polycondensation. Polym Degradation Stab. 2003;81:525–30.
Article
CAS
Google Scholar
Telegdi J, Trif L, Nagy E, Mihály J, Molnár N. New comonomers in malic acid polyesters. J Therm Anal Calorim. 2017;129:991–1000.
Article
CAS
Google Scholar
Telegdi J, Trif L, Mihály J, Nagy E, Nyikos L. Controlled synthesis and characterization of biodegradable, stereomer co-polycondensates of l-malic acid. J Therm Anal Calorim. 2015;121:663–73.
Article
CAS
Google Scholar
Ouchi T, Fujino A. Synthesis of poly(α-malic acid) and its hydrolysis behavior in vitro. Die Makromolekulare Chemie. 1989;190:1523–30.
Article
CAS
Google Scholar
Arnold SC, Lenz RW. Synthesis of stereoregular poly (alkyl malolactonates). Makromolekulare Chemie Macromol Symp. 1986;6:285–303.
Article
CAS
Google Scholar
Cammas S, Renard I, Boutault K, Guérin P. A novel synthesis of optically active 4-benzyloxy-and 4-alkyloxycarbonyl-2-oxetanones. Tetrahedron Asymmetry. 1993;4:1925–30.
Article
CAS
Google Scholar
Vert M, Lenz R. Preparation and properties of poly-β-malic acid: a functional polyester of potential biomedical importance. Am Chem Soc Div Polym Chem Prepr. 1979;20:608–11.
CAS
Google Scholar
Guerin P, Vert M, Braud C, Lenz R. Optically active poly (\-malic-acid). Polym Bull. 1985;14:187–92.
Article
CAS
Google Scholar
Guerin P, Francillette J, Braud C, Vert M. Benzyl esters of optically active malic acid stereocopolymers as obtained by ring-opening polymerization of (R)-(+) and (S)-(-)-benzyl malolactonates. Makromol Chem, Macromol Symp. 1986;6:305–14.
Article
CAS
Google Scholar
Cammas S, Renard I, Langlois V, Guéri P. Poly (β-malic acid): obtaining high molecular weights by improvement of the synthesis route. Polymer. 1996;37:4215–20.
Article
CAS
Google Scholar
Brossard C, Vlach M, Vène E, Ribault C, Dorcet V, Noiret N, Loyer P, Lepareur N, Cammas-Marion S. Synthesis of poly(malic acid) derivatives end-functionalized with peptides and preparation of biocompatible nanoparticles to target hepatoma cells. Nanomaterials (Basel). 2021;11:958.
Article
CAS
Google Scholar
Yu Z, Ren H, Zhang Y, Qiao Y, Wang C, Yang T, Wu H. Improved synthesis of a novel biodegradable tunable micellar polymer based on partially hydrogenated poly(β-malic acid-co-benzyl malate). Molecules. 2021;26:7169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas Guerrero MG, Pluta JB, Bellec N, Cammas-Marion S, Camerel F. Nanoprecipitation of biocompatible poly(malic acid) derivative, its ability to encapsulate a molecular photothermal agent and photothermal properties of the resulting nanoparticles. Molecules. 2021;26:7703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osanai S, Nakamura K. Effects of complexation between liposome and poly(malic acid) on aggregation and leakage behaviour. Biomaterials. 2000;21:867–76.
Article
CAS
PubMed
Google Scholar
Berenyi S, Mihaly J, Kristyan S, Naszalyi Nagy L, Telegdi J, Bota A. Thermotropic and structural effects of poly(malic acid) on fully hydrated multilamellar DPPC-water systems. Biochim Biophys Acta. 2013;1828:661–9.
Article
CAS
PubMed
Google Scholar
Coulembier O, Degée P, Hedrick JL, Dubois P. From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly (β-malic acid) derivatives. Prog Polym Sci. 2006;31:723–47.
Article
CAS
Google Scholar
Lee BS, Holler E. Beta-poly(L-malate) production by non-growing microplasmodia of Physarum polycephalum. Effects of metabolic intermediates and inhibitors. FEMS Microbiol Lett. 2000;193:69–74.
CAS
PubMed
Google Scholar
Liu S-J, Steinbüchel A. Production of poly (malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotech Lett. 1997;19:11–4.
Article
Google Scholar
Ljubimova JY, Holler E. Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond). 2012;7:1467–70.
Article
CAS
Google Scholar
Ding H, Portilla-Arias J, Patil R, Black KL, Ljubimova JY, Holler E. The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials. 2011;32:5269–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borst P. The malate–aspartate shuttle (Borst cycle): how it started and developed into a major metabolic pathway. IUBMB Life. 2020;72:2241–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolce V, Cappello AR, Capobianco L. Mitochondrial tricarboxylate and dicarboxylate-tricarboxylate carriers: from animals to plants. IUBMB Life. 2014;66:462–71.
Article
CAS
PubMed
Google Scholar
Karl M, Gasselmaier B, Krieg RC, Holler E. Localization of fluorescence-labeled poly(malic acid) to the nuclei of the Plasmodium of Physarum polycephalum. Eur J Biochem. 2003;270:1536–42.
Article
CAS
PubMed
Google Scholar
Willibald B, Bildl W, Lee BS, Holler E. Is beta-poly(l-malate) synthesis catalysed by a combination of beta-l-malyl-AMP-ligase and beta-poly(l-malate) polymerase? Eur J Biochem. 1999;265:1085–90.
Article
CAS
PubMed
Google Scholar
Zhang J, Chen D, Liang G, Xu W, Tao Z. Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine. Trends Biochem Sci. 2021;46:213–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmidt A, Windisch C, Holler E. Nuclear accumulation and homeostasis of the unusual polymer beta-poly (l-malate) in plasmodia of Physarum polycephalum. Eur J Cell Biol. 1996;70:373–80.
CAS
PubMed
Google Scholar
Göttler T, Holler E. Screening for β-poly (l-malate) binding proteins by affinity chromatography. Biochem Biophys Res Commun. 2006;341:1119–27.
Article
PubMed
CAS
Google Scholar
Doerhoefer S, Windisch C, Angerer B, Lavrik OI, Lee BS, Holler E. The DNA-polymerase inhibiting activity of poly (β-l-malic acid) in nuclear extract during the cell cycle of Physarum polycephalum. Eur J Biochem. 2002;269:1253–8.
Article
CAS
PubMed
Google Scholar
Karl M, Anderson R, Holler E. Injection of poly (β-l-malate) into the plasmodium of Physarum polycephalum shortens the cell cycle and increases the growth rate. Eur J Biochem. 2004;271:3805–11.
Article
CAS
PubMed
Google Scholar
Pinchai N, Lee BS, Holler E. Stage specific expression of poly(malic acid)-affiliated genes in the life cycle of Physarum polycephalum. Spherulin 3b and polymalatase. FEBS J. 2006;273:1046–55.
Article
CAS
PubMed
Google Scholar
Zou X, Li S, Wang P, Li B, Feng Y, Yang S-T. Sustainable production and biomedical application of polymalic acid from renewable biomass and food processing wastes. Crit Rev Biotechnol. 2021;41:216–28.
Article
CAS
PubMed
Google Scholar
Rathberger K, Reisner H, Willibald B, Molitoris H-P, Holler E. Comparative synthesis and hydrolytic degradation of poly (l-malate) by myxomycetes and fungi. Mycol Res. 1999;103:513–20.
Article
CAS
Google Scholar
Holler E. Poly (malic acid) from natural sources. Handbook of engineering polymeric materials. New York: CRC Press; 1997. p. 93–103.
Google Scholar
Feng J, Yang J, Li X, Guo M, Wang B, Yang ST, Zou X. Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene. 2017;607:1–8.
Article
CAS
PubMed
Google Scholar
Qi C-Y, Jia S-L, Liu G-L, Chen L, Wei X, Hu Z, Chi Z-M, Chi Z. Polymalate (PMA) biosynthesis and its molecular regulation in Aureobasidium spp. Int J Biol Macromol. 2021;174:512–8.
Article
CAS
PubMed
Google Scholar
Strieker M, Tanovic A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20:234–40.
Article
CAS
PubMed
Google Scholar
Godde C, Liebergesell M, Steinbuchel A. Isolation of poly(beta-l-malic acid)-degrading bacteria and purification and characterization of the PMA hydrolase from Comamonas acidovorans strain 7789. FEMS Microbiol Lett. 1999;173:365–72.
Article
CAS
PubMed
Google Scholar
Korherr C, Roth M, Holler E. Poly (β-l-malate) hydrolase from plasmodia of Physarum polycephalum. Can J Microbiol. 1995;41:192–9.
Article
CAS
Google Scholar
Karl M, Holler E. Multiple polypeptides immunologically related to β-poly (l-malate) hydrolase (polymalatase) in the plasmodium of the slime mold Physarum polycephalum. Eur J Biochem. 1998;251:405–12.
Article
CAS
PubMed
Google Scholar
Mueller W, Haindl M, Holler E. Physarum polymalic acid hydrolase: recombinant expression and enzyme activation. Biochem Biophys Res Commun. 2008;377:735–40.
Article
CAS
PubMed
Google Scholar
Gasslmaier B, Krell CM, Seebach D, Holler E. Synthetic substrates and inhibitors of beta-poly(l-malate)-hydrolase (polymalatase). Eur J Biochem. 2000;267:5101–5.
Article
CAS
PubMed
Google Scholar
Gasslmaier B, Holler E. Specificity and direction of depolymerization of beta-poly(l-malate) catalysed by polymalatase from Physarum polycephalum–fluorescence labeling at the carboxy-terminus of beta-poly(l-malate). Eur J Biochem. 1997;250:308–14.
Article
CAS
PubMed
Google Scholar
Krell CM, Seebach D. Preparation of free and of specifically protected oligo [β-malic acids] for enzymatic degradation studies. Eur J Org Chem. 2000;2000:1207–18.
Article
Google Scholar
Holler E: Production of long chain unbranched beta-poly (L-malic acid) by large scale Physarum cultivation and high-grade purification of the same. Google Patents; 2013.
Ljubimova JY, Ding H, Portilla-Arias J, Patil R, Gangalum PR, Chesnokova A, Inoue S, Rekechenetskiy A, Nassoura T, Black KL, Holler E. Polymalic acid-based nano biopolymers for targeting of multiple tumor markers: an opportunity for personalized medicine? J Vis Exp. 2014;88:50668.
Google Scholar
Manitchotpisit P, Skory CD, Peterson SW, Price NP, Vermillion KE, Leathers TD. Poly(beta-l-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. J Ind Microbiol Biotechnol. 2012;39:125–32.
Article
CAS
PubMed
Google Scholar
Zeng W, Zhang B, Li M, Ding S, Chen G, Liang Z. Development and benefit evaluation of fermentation strategies for poly(malic acid) production from malt syrup by Aureobasidium melanogenum GXZ-6. Bioresour Technol. 2019;274:479–87.
Article
CAS
PubMed
Google Scholar
Yegin S, Saha BC, Kennedy GJ, Leathers TD. Valorization of egg shell as a detoxifying and buffering agent for efficient polymalic acid production by Aureobasidium pullulans NRRL Y-2311-1 from barley straw hydrolysate. Bioresour Technol. 2019;278:130–7.
Article
CAS
PubMed
Google Scholar
Zeng W, Zhang B, Jiang L, Liu Y, Ding S, Chen G, Liang Z. Poly(malic acid) production from liquefied corn starch by simultaneous saccharification and fermentation with a novel isolated Aureobasidium pullulans GXL-1 strain and its techno-economic analysis. Bioresour Technol. 2020;304: 122990.
Article
CAS
PubMed
Google Scholar
Feng J, Li T, Zhang X, Chen J, Zhao T, Zou X. Efficient production of polymalic acid from xylose mother liquor, an environmental waste from the xylitol industry, by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol. 2019;103:6519–27.
Article
CAS
PubMed
Google Scholar
Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics. 2014;15:549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song X, Wang Y, Wang P, Pu G, Zou X. GATA-type transcriptional factor Gat1 regulates nitrogen uptake and polymalic acid biosynthesis in polyextremotolerant fungus Aureobasidium pullulans. Environ Microbiol. 2020;22:229–42.
Article
CAS
PubMed
Google Scholar
Wang Y, Song X, Zhang Y, Wang B, Zou X. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Fact. 2016;15:146.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakajima-Kambe T, Hirotani N, Nakahara T. Poly (β-malic acid) production by the non-growing cells of Aureobasidium sp. strain A-91. J Ferment Bioeng. 1996;82:411–3.
Article
CAS
Google Scholar
Lee B, Holler E. Effects of culture conditions on β-poly (l-malate) production by Physarum polycephalum. Appl Microbiol Biotechnol. 1999;51:647–52.
Article
CAS
Google Scholar
Kurosawa T, Sakai K, Nakahara T, Oshima Y, Tabuch T. Extracellular accumulation of the polyol lipids, 3, 5-dihydroxydecanoyl and 5-hydroxy-2-decenoyl esters of arabitol and mannitol, by Aureobasidium sp. Biosci Biotechnol Biochem. 1994;58:2057–60.
Article
CAS
Google Scholar
Zhang H, Cai J, Dong J, Zhang D, Huang L, Xu Z, Cen P. High-level production of poly (β-l-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol. 2011;92:295–303.
Article
CAS
PubMed
Google Scholar
Cao W, Chen X, Luo J, Yin J, Qiao C, Wan Y. High molecular weight beta-poly(l-malic acid) produced by A. pullulans with Ca(2)(+) added repeated batch culture. Int J Biol Macromol. 2016;85:192–9.
Article
CAS
PubMed
Google Scholar
Liu S, Steinbüchel A. Investigation of poly (β-l-malic acid) production by strains of Aureobasidium pullulans. Appl Microbiol Biotechnol. 1996;46:273–8.
Article
CAS
Google Scholar
Cao W, Qi B, Zhao J, Qiao C, Su Y, Wan Y. Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing β-poly (malic acid) production by Aureobasidium pullulans ipe-1. J Chem Technol Biotechnol. 2013;88:808–17.
Article
CAS
Google Scholar
Yin H, Gao C, Ye K, Zhao T, Sun A, Qiao C. Evaluation of surfactant effect on β-poly (l-malic acid) production by Aureobasidium pullulans. Biotechnol Biotechnol Equip. 2019;33:954–66.
Article
CAS
Google Scholar
Wang YK, Chi Z, Zhou HX, Liu GL, Chi ZM. Enhanced production of Ca(2)(+)-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microb Cell Fact. 2015;14:115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang J, Yang W, Feng J, Chen J, Jiang M, Zou X. Enhanced polymalic acid production from the glyoxylate shunt pathway under exogenous alcohol stress. J Biotechnol. 2018;275:24–30.
Article
CAS
PubMed
Google Scholar
Feng J, Yang J, Yang W, Chen J, Jiang M, Zou X. Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. Biotechnol Biofuels. 2018;11:94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao W, Cao W, Shen F, Luo J, Yin J, Qiao C, Wan Y. Membrane-assisted β-poly (l-malic acid) production from bagasse hydrolysates by Aureobasidium pullulans ipe-1. Biores Technol. 2020;295:122260.
Article
CAS
Google Scholar
Xia J, Li R, He A, Xu J, Liu X, Li X, Xu J. Production of poly (β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation. Bioresour Technol. 2017;244:289–95.
Article
CAS
PubMed
Google Scholar
Holler E, Lee B. Analysis of poly (β-L-malic acid) in tissue and solution. Recent Res Dev Anal Chem. 2002;2:177–92.
Google Scholar
Ding H, Patil R, Portilla-Arias J, Black KL, Ljubimova JY, Holler E. Quantitative analysis of PMLA nanoconjugate components after backbone cleavage. Int J Mol Sci. 2015;16:8607–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fournie P, Domurado D, Guerin P, Braud C, Vert M, Madelmont J-C. In vivo fate of end-chain radiolabelled poly (β-malic acid), a water-soluble biodegradable drug carrier. J Bioact Compat Polym. 1990;5:381–95.
Article
CAS
Google Scholar
Fournie P, Domurado D, Guerin P, Braud C, Vert M, Pontikis R. In vivo fate of repeat-unit-radiolabelled poly (β-malic acid), a potential drug carrier. J Bioact Compat Polym. 1992;7:113–29.
Article
CAS
Google Scholar
Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N, et al. Inhibition of brain tumor growth by intravenous poly (beta-l-malic acid) nanobioconjugate with pH-dependent drug release [corrected]. Proc Natl Acad Sci USA. 2010;107:18143–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3:358–74.
Article
Google Scholar
Mugabe C, Matsui Y, So AI, Gleave ME, Baker JHE, Minchinton AI, Manisali I, Liggins R, Brooks DE, Burt HM. In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non–muscle-invasive bladder cancer. Clin Cancer Res. 2011;17:2788–98.
Article
CAS
PubMed
Google Scholar
Braud C, Vert M. Poly (β-malic acid) as a source of polyvalent drug carriers: possible effects of hydrophobic substituents in aqueous media. In: Shalaby Shalaby W, Hoffman Allan S, Ratner Buddy D, Horbett Thomas A, editors. Polymers as biomaterials. Boston: Springer; 1984. p. 1–15.
Google Scholar
Braud C, Bunel C, Vert M. Poly (β-malic acid): a new polymeric drug-carrier. Polym Bull. 1985;13:293–9.
Article
CAS
Google Scholar
Braud C, Vert M. Degradation of poly (β-malic acid)-monitoring of oligomers formation by aqueous SEC and HPCE. Polym Bull. 1992;29:177–83.
Article
CAS
Google Scholar
Zou X, Zhou Y, Yang ST. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng. 2013;110:2105–13.
Article
CAS
PubMed
Google Scholar
Nagata N, Nakahara T, Tabuchi T. Fermentative production of poly (β-l-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Biosci Biotechnol Biochem. 1993;57:638–42.
Article
CAS
Google Scholar
Portilla-Arias J, Patil R, Hu J, Ding H, Black KL, Garcia-Alvarez M, Munoz-Guerra S, Ljubimova JY, Holler E. Nanoconjugate platforms development based in poly(beta,l-malic acid) methyl esters for tumor drug delivery. J Nanotechnol. 2010;2010:825363.
PubMed
PubMed Central
Google Scholar
Portilla-Arias JA, Garcia-Alvarez M, de Ilarduya AM, Holler E, Galbis JA, Munoz-Guerra S. Synthesis, degradability, and drug releasing properties of methyl esters of fungal poly(beta, l-malic acid). Macromol Biosci. 2008;8:540–50.
Article
CAS
PubMed
Google Scholar
Mauduit J, Boustta M, Vert M. Hydrolytic degradation of benzylated poly(beta-malic acid): influence of sample size, sample shape, and polymer composition. J Biomater Sci Polym Ed. 1995;7:207–20.
Article
CAS
PubMed
Google Scholar
Martinez Barbosa ME, Cammas S, Appel M, Ponchel G. Investigation of the degradation mechanisms of poly (malic acid) esters in vitro and their related cytotoxicities on J774 macrophages. Biomacromolecules. 2004;5:137–43.
Article
PubMed
CAS
Google Scholar
Ding H, Fox I, Patil R, Galstyan A, Black KL, Ljubimova JY, Holler E. Polymalic acid tritryptophan copolymer interacts with lipid membrane resulting in membrane solubilization. J Nanomater. 2017;2017:4238697.
PubMed
PubMed Central
Google Scholar
Ding H, Portilla-Arias J, Patil R, Black KL, Ljubimova JY, Holler E. Distinct mechanisms of membrane permeation induced by two polymalic acid copolymers. Biomaterials. 2013;34:217–25.
Article
CAS
PubMed
Google Scholar
Asefa T, Tao Z. Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol. 2012;25:2265–84.
Article
CAS
PubMed
Google Scholar
Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P, Bucki R. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology. 2016;14:39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jia M, Zhang D, Zhang C, Li C. Nanoparticle-based delivery systems modulate the tumor microenvironment in pancreatic cancer for enhanced therapy. J Nanobiotechnology. 2021;19:384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee BS, Fujita M, Khazenzon NM, Wawrowsky KA, Wachsmann-Hogiu S, Farkas DL, Black KL, Ljubimova JY, Holler E. Polycefin, a new prototype of a multifunctional nanoconjugate based on poly(beta-l-malic acid) for drug delivery. Bioconjug Chem. 2006;17:317–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14:9–21.
Article
CAS
PubMed
Google Scholar
Patil R, Gangalum PR, Wagner S, Portilla-Arias J, Ding H, Rekechenetskiy A, Konda B, Inoue S, Black KL, Ljubimova JY, Holler E. Curcumin targeted, polymalic acid-based MRI contrast agent for the detection of abeta plaques in Alzheimer’s disease. Macromol Biosci. 2015;15:1212–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil R, Ljubimov AV, Gangalum PR, Ding H, Portilla-Arias J, Wagner S, Inoue S, Konda B, Rekechenetskiy A, Chesnokova A, et al. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain. ACS Nano. 2015;9:5594–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Israel LL, Braubach O, Galstyan A, Chiechi A, Shatalova ES, Grodzinski Z, Ding H, Black KL, Ljubimova JY, Holler E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano. 2019;13:1253–71.
CAS
PubMed
PubMed Central
Google Scholar
Patil R, Galstyan A, Grodzinski ZB, Shatalova ES, Wagner S, Israel LL, Ding H, Black KL, Ljubimova JY, Holler E. Single-and multi-arm gadolinium MRI contrast agents for targeted imaging of glioblastoma. Int J Nanomed. 2020;15:3057.
Article
CAS
Google Scholar
Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, Klymyshyn D, Tourtellotte WG, Israel LL, Braubach O, et al. Blood-brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10:3850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patil R, Galstyan A, Sun T, Shatalova ES, Butte P, Mamelak AN, Carico C, Kittle DS, Grodzinski ZB, Chiechi A, et al. Polymalic acid chlorotoxin nanoconjugate for near-infrared fluorescence guided resection of glioblastoma multiforme. Biomaterials. 2019;206:146–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Tang C, Yin C. Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials. 2014;35:6369–78.
Article
CAS
PubMed
Google Scholar
Qiao Y, Zhan C, Wang C, Shi X, Yang J, He X, Ji E, Yu Z, Yan C, Wu H. MMP-2 sensitive poly(malic acid) micelles stabilized by pi-pi stacking enable high drug loading capacity. J Mater Chem B. 2020;8:8527–35.
Article
CAS
PubMed
Google Scholar
Zhou Q, Hou Y, Zhang L, Wang J, Qiao Y, Guo S, Fan L, Yang T, Zhu L, Wu H. Dual-pH sensitive charge-reversal nanocomplex for tumor-targeted drug delivery with enhanced anticancer activity. Theranostics. 2017;7:1806–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanz-Landázuri A, de Ilarduya AM, García-Alvarez M, Muñoz-Guerra S. Poly (β, l-malic acid)/Doxorubicin ionic complex: a pH-dependent delivery system. React Funct Polym. 2014;81:45–53.
Article
CAS
Google Scholar
Portilla-Arias JA, García-Alvarez M, de Ilarduya AM, Muñoz-Guerra S. Ionic complexes of biosynthetic poly (malic acid) and poly (glutamic acid) as prospective drug-delivery systems. Macromol Biosci. 2007;7:897–906.
Article
CAS
PubMed
Google Scholar
Arif M, Raja MA, Zeenat S, Chi Z, Liu C. Preparation and characterization of polyelectrolyte complex nanoparticles based on poly (malic acid), chitosan. A pH-dependent delivery system. J Biomater Sci Polym Ed. 2017;28:50–62.
Article
CAS
PubMed
Google Scholar
Arif M, Dong Q-J, Raja MA, Zeenat S, Chi Z, Liu C-G. Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Mater Sci Eng C. 2018;83:17–24.
Article
CAS
Google Scholar
Arif M, Sharaf M, Samreen KS, Chi Z, Liu C-G. Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of Helicobacter pylori biofilm. J Biomater Sci Polym Ed. 2021;32:813–32.
Article
CAS
PubMed
Google Scholar
Arif M, Sharaf M, Samreen Dong Q, Wang L, Chi Z, Liu C-G. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. J Biomater Sci Polym Ed. 2021;32:2423–47.
Article
CAS
PubMed
Google Scholar
Hsu BB, Hagerman SR, Jamieson K, Veselinovic J, O’Neill N, Holler E, Ljubimova JY, Hammond PT. Multilayer films assembled from naturally-derived materials for controlled protein release. Biomacromolecules. 2014;15:2049–57.
Article
CAS
PubMed
PubMed Central
Google Scholar