Ridgwell A, Zeebe R. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet Sci Lett. 2005;234(3–4):299–315.
Article
CAS
Google Scholar
Blackmore R. Magnetotactic bacteria. Science. 1975;190:377–9.
Article
Google Scholar
Amor M, Busigny V, Louvat P, Gélabert A, Cartigny P, Durand-Dubief M, Ona-Nguema G, Alphandéry E, Chebbi I, Guyot F. Mass-dependent and -independent signature of Fe isotopes in manetotactic bacteria. Science. 2016;352:705–8.
Article
CAS
PubMed
Google Scholar
Frankel RB. Magnetic guidance of organisms. Annu Rev Biophys Bioeng. 1984;13:85–103.
Article
CAS
PubMed
Google Scholar
Frankel RB, Blackmore RP, Torres De Araujo FF, Danon J. Magnetotactic bacteria at the geomagnetic equator. Science. 1981;212:1269–70.
Article
CAS
PubMed
Google Scholar
Blakemore RP. Magnetotactic bacteria. Science. 1982;36:217–38.
CAS
Google Scholar
Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57:395–418.
Article
CAS
PubMed
Google Scholar
Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, Kappler A. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science. 2015;347:1473–6.
Article
CAS
PubMed
Google Scholar
Guo FF, Yang W, Jiang W, Geng S, Peng T, Li JL. Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. Environ Microbiol. 2012;14(7):1722–9.
Article
CAS
PubMed
Google Scholar
Li K, Chen C, Chen C, Wang Y, Wei Z, Pan W, et al. Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. Enzyme Microb Technol. 2015;72:72–8.
Article
CAS
PubMed
Google Scholar
Schuerle S, Soleimany AP, Yeh T, Anand GM, Haberli M, Fleming HE, et al. Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci Adv. 2019;5(4):eaav4803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Zhong XuY, Loghin D, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol. 2016;11(11):941–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing J, Yin T, Li S, Xu T, Ma A, Chen Z, et al. Sequential magneto-actuated and optics-triggered biomicrorobots for targeted cancer therapy. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202008262.
Article
PubMed
PubMed Central
Google Scholar
Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano. 2014;8(5):5049–60.
Article
CAS
PubMed
Google Scholar
Xu J, Liu L, He J, Ma S, Li S, Wang Z, et al. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads. J Nanobiotechnol. 2019;17(1):37.
Article
Google Scholar
He J, Tian J, Xu J, Wang K, Li J, Gee SJ, et al. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Anal Bioanal Chem. 2018;410(25):6633–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang Z, Yang X, Xu J, Lai W, Wang Z, Hu Z, et al. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials. 2017;115:53–64.
Article
CAS
PubMed
Google Scholar
Wang C, Xu C, Zeng H, Sun S. Recent progress in syntheses and applications of Dumbbell-like nanoparticles. Adv Mater. 2009;21(30):3045–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddinedi SB. Green synthesis of Au-Cu2-xSe heterodimer nanoparticles and their in-vitro cytotoxicity, photothermal assay. Environ Toxicol Pharmacol. 2017;53:29–33.
Article
CAS
PubMed
Google Scholar
Kuo TR, Hung ST, Lin YT, Chou TL, Kuo MC, Kuo YP, et al. Green synthesis of InP/ZnS core/shell quantum dots for application in heavy-metal-free light-emitting diodes. Nanoscale Res Lett. 2017;12(1):537.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martins LHS, Rai M, Neto JM, Oliveira JAR, Martins JHS, Komesu A, Debora Moreira KT, Gomes PWP. Nanomaterials: properties, toxicity, safety, and drug delivery. In: Rai M, Santos CA, editors. Nanotechnology applied to pharmaceutical technology. Springer: Cham; 2017. p. 363–81.
Chapter
Google Scholar
Tri PN, Ouellet-Plamondon C, Rtimi S, Assadi AA, Nguyen TA. Methods for synthesis of hybrid nanoparticles. In: Mohapatra S, Nguyen TA, Nguyen-Tri P, editors. Noble metal-metal oxide hybrid nanoparticles: fundamentals and applications. Woodhead Publishing: UK; 2018. p. 3–6.
Google Scholar
Barabadi H. Nanobiotechnology: a promising scope of gold biotechnology. Cell Mol Biol (Noisy-le-grand). 2017;63(12):3–4.
Article
Google Scholar
Soni V, Raizada P, Singh P, Cuong HN, Rangabhashiyam S, Saini A, et al. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environ Res. 2021;202: 111622.
Article
CAS
PubMed
Google Scholar
Saravanan M, Barabadi H, Vahidi H. Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. In: Patra C, Ahmad I, Ayaz M, Khalil AT, Mukherjee S, Ovais M, editors. Biogenic nanoparticles for cancer theranostics. Asterdam: Elsevier Inc; 2021.
Google Scholar
Marcano L, Muñoz D, Martín-Rodríguez R, Orue I, Alonso J, García-Prieto A, et al. Magnetic study of Co-doped magnetosome chains. J Phys Chem C. 2018;122(13):7541–50.
Article
CAS
Google Scholar
Munoz D, Marcano L, Martin-Rodriguez R, Simonelli L, Serrano A, Garcia-Prieto A, et al. Magnetosomes could be protective shields against metal stress in magnetotactic bacteria. Sci Rep. 2020;10(1):11430.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Zeng G, Yan J, Liu X, Jiang X, Yang J, et al. One-pot green synthesis of I@CNDs-Fe3O4 hybrid nanoparticles from kelp for multi-modal imaging in vivo. Mater Sci Eng C Mater Biol Appl. 2021;124: 112037.
Article
CAS
PubMed
Google Scholar
Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B. Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol. 2008;3(3):158–62.
Article
CAS
PubMed
Google Scholar
Alphandéry E, Carvallo C, Menguy N, Chebbi I. Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phys Chem C. 2011;115(24):11920–4.
Article
CAS
Google Scholar
Li W, Guo F, Ling H, Zhang P, Yi M, Wang L, et al. High-performance nonvolatile organic field-effect transistor memory based on organic semiconductor heterostructures of pentacene/P13/pentacene as both charge transport and trapping layers. Adv Sci (Weinh). 2017;4(8):1700007.
Article
CAS
Google Scholar
Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: a review. J Basic Microbiol. 2017;57(8):643–52.
Article
CAS
PubMed
Google Scholar
Yan X, Zhang DW, Liu C, Bao W, Wang S, Ding S, et al. High performance amplifier element realization via MoS2/GaTe heterostructures. Adv Sci (Weinh). 2018;5(4):1700830.
Article
CAS
Google Scholar
Kashyap M, Samadhiya K, Ghosh A, Anand V, Lee H, Sawamoto N, et al. Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as neutral lipid inducer and antibacterial agent. Environ Res. 2021;201: 111499.
Article
CAS
PubMed
Google Scholar
Taubes G. The bacteria fight back. Science. 2008;321:356–61.
Article
CAS
PubMed
Google Scholar
Lakkim V, Reddy MC, Pallavali RR, Reddy KR, Reddy CV, Inamuddin AL, Bilgrami DL. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics. 2020;9(12):902. https://doi.org/10.3390/antibiotics9120902.
Article
CAS
PubMed Central
Google Scholar
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175–86.
Article
CAS
PubMed
Google Scholar
Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, et al. Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano. 2017;11(6):5737–45.
Article
CAS
PubMed
Google Scholar
Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv Sci (Weinh). 2020;7(6):1902673.
Article
CAS
Google Scholar
Wang S, Zheng H, Zhou L, Cheng F, Liu Z, Zhang H, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20(7):5149–58.
Article
CAS
PubMed
Google Scholar
Wu J, Zhu J, Wu Q, An Y, Wang K, Xuan T, et al. Mussel-inspired surface immobilization of heparin on magnetic nanoparticles for enhanced wound repair via sustained release of a growth factor and M2 macrophage polarization. ACS Appl Mater Interfaces. 2021;13(2):2230–44.
Article
CAS
PubMed
Google Scholar
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thangavel P, Ramachandran B, Chakraborty S, Kannan R, Lonchin S, Muthuvijayan V. Accelerated healing of diabetic wounds treated with L-glutamic acid loaded hydrogels through enhanced collagen deposition and angiogenesis: an in vivo study. Sci Rep. 2017;7(1):10701.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo F, Liu Y, Chen Y, Tang T, Jiang W, Li Y, et al. A novel rapid and continuous procedure for large-scale purification of magnetosomes from Magnetospirillum gryphiswaldense. Appl Microbiol Biotechnol. 2011;90(4):1277–83.
Article
CAS
PubMed
Google Scholar
Honda T, Tanaka T, Yoshino T. Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromol. 2015;16(12):3863–8.
Article
CAS
Google Scholar
Zhang L, Dou YH, Gu HC. Synthesis of Ag-Fe3O4 heterodimeric nanoparticles. J Colloid Interface Sci. 2006;297(2):660–4.
Article
CAS
PubMed
Google Scholar
Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chen Soc. 2005;127:34–5.
Article
CAS
Google Scholar
Zhang H, Yang Z, Ju Y, Chu X, Ding Y, Huang X, et al. Galvanic displacement synthesis of monodisperse janus- and satellite-like plasmonic-magnetic Ag-Fe@Fe3O4 heterostructures with reduced cytotoxicity. Adv Sci (Weinh). 2018;5(8):1800271.
Article
CAS
Google Scholar
Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, et al. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep. 2016;6:23347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rishi P, Vij S, Maurya IK, Kaur UJ, Bharati S, Tewari R. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant Staphylococcus aureus (MRSA). Microb Pathog. 2018;124:11–20.
Article
CAS
PubMed
Google Scholar
Sader HS, Jones RN. Comprehensive in vitro evaluation of cefepime combined with aztreonam or ampicillin/sulbactam against multi-drug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int J Antimicrob Agents. 2005;25(5):380–4.
Article
CAS
PubMed
Google Scholar
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Romalde JL, Nesme J, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: a systematic review. Sci Total Environ. 2020;743: 140804.
Article
CAS
PubMed
Google Scholar
Imran M, Jha SK, Hasan N, Insaf A, Shrestha J, Shrestha J, et al. Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14030586.
Article
PubMed
PubMed Central
Google Scholar
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed. 2020;15:2555–62.
Article
CAS
Google Scholar
Vila Dominguez A, AyerbeAlgaba R, Miro Canturri A, Rodriguez Villodres A, Smani Y. Antibacterial activity of colloidal silver against gram-negative and gram-positive bacteria. Antibiotics (Basel). 2020. https://doi.org/10.3390/antibiotics9010036.
Article
PubMed
PubMed Central
Google Scholar
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–67.
Article
CAS
PubMed
Google Scholar
Abdulsada Z, Kibbee R, Schwertfeger D, Princz J, DeRosa M, Ormeci B. Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. Water Res. 2021;206: 117757.
Article
CAS
PubMed
Google Scholar
Panacek A, Kvitek L, Smekalova M, Vecerova R, Kolar M, Roderova M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 2018;13(1):65–71.
Article
CAS
PubMed
Google Scholar
Pieretti JC, Goncalves MC, Nakazato G, Santos de Souza AC, Boudier A, Seabra AB. Multifunctional hybrid nanoplatform based on Fe3O4@Ag NPs for nitric oxide delivery: development, characterization, therapeutic efficacy, and hemocompatibility. J Mater Sci Mater Med. 2021;32(3):23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Colloids Surf B Biointerfaces. 2018;163:192–200.
Article
CAS
PubMed
Google Scholar
Bassetti S, Tschudin-Sutter S, Egli A, Osthoff M. Optimizing antibiotic therapies to reduce the risk of bacterial resistance. Eur J Intern Med. 2022. https://doi.org/10.1016/j.ejim.2022.01.029.
Article
PubMed
Google Scholar
Mikhailova EO. Silver nanoparticles: mechanism of action and probable bio-application. J Funct Biomater. 2020. https://doi.org/10.3390/jfb11040084.
Article
PubMed
PubMed Central
Google Scholar
Wright JA, Richards T, Srai SK. The role of iron in the skin and cutaneous wound healing. Front Pharmacol. 2014;5:156.
Article
PubMed
PubMed Central
CAS
Google Scholar
Belvedere R, Pessolano E, Novizio N, Tosco A, Eletto D, Porta A, et al. The promising pro-healing role of the association of mesoglycan and lactoferrin on skin lesions. Eur J Pharm Sci. 2021;163: 105886.
Article
CAS
PubMed
Google Scholar
Yu N, Cai T, Sun Y, Jiang C, Xiong H, Li Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm. 2018;552(1–2):277–87.
Article
CAS
PubMed
Google Scholar
Friedrich RP, Cicha I, Alexiou C. Iron oxide nanoparticles in regenerative medicine and tissue engineering. Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11092337.
Article
PubMed
PubMed Central
Google Scholar
Vargas G, Cypriano J, Correa T, Leao P, Bazylinski DA, Abreu F. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules. 2018. https://doi.org/10.3390/molecules23102438.
Article
PubMed
PubMed Central
Google Scholar
Mathuriya AS. Magnetotactic bacteria: nanodrivers of the future. Crit Rev Biotechnol. 2015;36(5):788–802.
Article
PubMed
CAS
Google Scholar
Sanchez LM, Alvarez VA. Advances in magnetic noble metal/iron-based oxide hybrid nanoparticles as biomedical devices. Bioengineering (Basel). 2019. https://doi.org/10.3390/bioengineering6030075.
Article
PubMed
PubMed Central
Google Scholar
Amor M, Ceballos A, Wan J, Simon CP, Aron AT, Chang CJ, et al. Magnetotactic bacteria accumulate a large pool of iron distinct from their magnetite crystals. Appl Environ Microbiol. 2020. https://doi.org/10.1128/AEM.01278-20.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol. 2011;77(17):5851–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suppi S, Kasemets K, Ivask A, Kunnis-Beres K, Sihtmae M, Kurvet I, et al. A novel method for comparison of biocidal properties of nanomaterials to bacteria, yeasts and algae. J Hazard Mater. 2015;286:75–84.
Article
CAS
PubMed
Google Scholar