Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.
Article
CAS
PubMed
Google Scholar
Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48:415–27.
Article
PubMed
PubMed Central
Google Scholar
Kim W, Zhu W, Hendricks GL, Tyne DV, Steele AD, Keohane CE, Fricke N, Conery AL, Shen S, Pan W, Lee K, Rajamuthiah R, Fuchs BB, Vlahovska PM, Wuest WM, Gilmore MS, Gao H, Ausubel FM, Mylonakis E. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature. 2018;556:103–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an underestimated moiety for structural modification, alters antibacterial profile of vancomycin against multidrug-resistant bacteria. Angew Chem Int Ed. 2019;58:1–7.
Article
CAS
Google Scholar
Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJY, Ladley RP, Chatman K, Mankin AS, Polikanov YS, Myers AG. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature. 2021;599:507–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Controlled Release. 2011;156:128–45.
Article
CAS
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coordin Chem Rev. 2018;357:1–17.
Article
CAS
Google Scholar
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.
Article
CAS
PubMed
Google Scholar
Fang G, Li W, Shen X, Perez-Aguilar JM, Chong Y, Gao X, Chai Z, Chen C, Ge C, Zhou R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against gram-positive and gram-negative bacteria. Nat Commun. 2018;9:129.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnol. 2021;19:353.
Article
CAS
Google Scholar
Barros CHN, Hiebner DW, Fulaz S, Vitale S, Quinn L, Casey E. Synthesis and self-assembly of curcumin-modified amphiphilic polymeric micelles with antibacterial activity. J Nanobiotechnol. 2021;19:104.
Article
CAS
Google Scholar
Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. J Nanobiotechnol. 2021;19:362.
Article
CAS
Google Scholar
Gao W, Zhang L. Nanomaterials arising amid antibiotic resistance. Nat Rev Microbiol. 2021;19:5–6.
Article
CAS
PubMed
Google Scholar
Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP. Mechano-bactericidal actions of nanostructured surfaces. Nat Rev Microbiol. 2021;19:8–22.
Article
CAS
PubMed
Google Scholar
Lam SJ, Wong EH, Boyer C, Qiao GG. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.
Article
CAS
Google Scholar
Khan MS, Abdelhamid HN, Wu HF. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids Surf B Biointerfaces. 2015;127:281–91.
Article
CAS
Google Scholar
Yousef MS, Abdelhamid HN, Hidalgo M, Fathy R, Gómez-Gascón L, Dorado J. Antimicrobial activity of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology. 2021;161:219–27.
Article
CAS
PubMed
Google Scholar
Abdelhamid HN, Talib A, Wu HF. Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv. 2015;5:34594–602.
Article
CAS
Google Scholar
Zheng Y, Jiang H, Wang X. Facet-dependent antibacterial activity of Au nanocrystals. Chinese Chem Lett. 2020;31:3183–9.
Article
CAS
Google Scholar
Zhang L, Wang E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9:132–57.
Article
CAS
Google Scholar
Tang M, Zhang J, Yang C, Zheng Y, Jiang H. Gold nanoclusters for bacterial detection and infection therapy. Front Chem. 2020;8:181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Setyawati MI, Leong DT, Xie J. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014;7:301–7.
Article
CAS
Google Scholar
Wang S, Wang Y, Peng Y, Yang X. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters. ACS Appl Mater Interfaces. 2019;11:8461–9.
Article
CAS
PubMed
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11:6904–10.
Article
CAS
PubMed
Google Scholar
Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116:10346–413.
Article
CAS
PubMed
Google Scholar
Zheng K, Xie J. Cluster materials as traceable antibacterial agents. Acc Mater Res. 2021;2:1104–16.
Article
CAS
Google Scholar
Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc Chem Res. 2018;51:2764–73.
Article
CAS
PubMed
Google Scholar
Wilcoxon JP, Abrams BL. Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev. 2006;35:1162–94.
Article
CAS
PubMed
Google Scholar
Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, Chang HT. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. J Hazard Mater. 2020;389:121821.
Article
CAS
PubMed
Google Scholar
Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials. 2014;35:6707–15.
Article
CAS
PubMed
Google Scholar
Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4:26–49.
Article
CAS
PubMed
Google Scholar
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7.
Article
CAS
PubMed
Google Scholar
Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.
Article
CAS
PubMed
Google Scholar
Zheng Y, Jiang H, Wang X. Multiple strategies for controlled synthesis of atomically precise alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.
Article
CAS
Google Scholar
Zheng K, Xie J. Composition-dependent antimicrobial ability of full-spectrum AuxAg25–x alloy nanoclusters. ACS Nano. 2020;14:11533–41.
Article
CAS
PubMed
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Overcoming bacterial physical defenses with molecule-like ultrasmall antimicrobial gold nanoclusters. Bioact Mater. 2021;6:941–50.
Article
CAS
PubMed
Google Scholar
Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc. 2005;127:9374–5.
Article
CAS
PubMed
Google Scholar
Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjugate Chem. 2018;29:3094–103.
Article
CAS
Google Scholar
Zheng Y, Wu J, Jiang H, Wang X. Gold nanoclusters for theranostic applications. Coordin Chem Rev. 2021;431:213689.
Article
CAS
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem Mater. 2018;30:2800–8.
Article
CAS
Google Scholar
Pranantyo D, Liu P, Zhong W, Kang ET, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial targeting and imaging. Biomacromolecules. 2019;20:2922–33.
Article
CAS
PubMed
Google Scholar
Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu K, Jiang X. Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angew Chem Int Ed. 2018;57:3958–62.
Article
CAS
Google Scholar
Li Y, Zhen J, Tian Q, Shen C, Zhang L, Yang K, Shang L. One step synthesis of positively charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant bacteria and biofilms. J Colloid Interface Sci. 2020;569:235–43.
Article
CAS
PubMed
Google Scholar
Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci. Small. 2015;11:3183–93.
Article
CAS
PubMed
Google Scholar
Wang Y, Malkmes MJ, Jiang C, Wang P, Zhu L, Zhang H, Zhang Y, Huang H, Jiang L. Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. J Hazard Mater. 2021;416:126236.
Article
CAS
PubMed
Google Scholar
Landis RF, Li CH, Gupta A, Lee YW, Yazdani M, Ngernyuang N, Altinbasak I, Mansoor S, Khichi MAS, Sanyal A, Rotello VM. Biodegradable nanocomposite antimicrobials for the eradication of multidrug-resistant bacterial biofilms without accumulated resistance. J Am Chem Soc. 2018;140:6176–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res. 2009;43:1027–32.
Article
CAS
PubMed
Google Scholar
Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119:4881–985.
Article
CAS
PubMed
Google Scholar
Kasuga NC, Yoshikawa R, Sakai Y, Nomiya K. Syntheses, structures, and antimicrobial activities of remarkably light-stable and water-soluble silver complexes with amino acid derivatives, silver(I) N-acetylmethioninates. Inorg Chem. 2012;51:1640–7.
Article
CAS
PubMed
Google Scholar
Yuan X, Setyawati MI, Tan AS, Ong CN, Leong DT, Xie J. Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater. 2013;5:e39.
Article
CAS
Google Scholar
Haidari H, Kopecki Z, Bright R, Cowin AJ, Garg S, Goswami N, Vasilev K. Ultrasmall AgNP-impregnated biocompatible hydrogel with highly effective biofilm elimination properties. ACS Appl Mater Interfaces. 2020;12:41011–25.
Article
CAS
PubMed
Google Scholar
Xia J, Wang W, Hai X, Shuang E, Shu Y, Wang J. Improvement of antibacterial activity of copper nanoclusters for selective inhibition on the growth of gram-positive bacteria. Chinese Chem. Lett. 2019;30:421–4.
Article
CAS
Google Scholar
Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist. 2018;11:567–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Cai R, Zhang Y, Chen Y, Gu B. Gold nanoclusters as an antibacterial alternative against Clostridium difficile. Int J Nanomed. 2020;15:6401–8.
Article
CAS
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Observing antimicrobial process with traceable gold nanoclusters. Nano Res. 2021;14:1026–33.
Article
CAS
Google Scholar
Chang TK, Cheng TM, Chu HL, Tan SH, Kuo JC, Hsu PH, Su CY, Chen HM, Lee CM, Kuo TR. Metabolic mechanism investigation of antibacterial active cysteine-conjugated gold nanoclusters in Escherichia coli. ACS Sustainable Chem Eng. 2019;7:15479–86.
Article
CAS
Google Scholar
Wu Q, Peng R, Gong F, Luo Y, Zhang H, Cui Q. Aqueous synthesis of N-heterocyclic carbene-protected gold nanoclusters with intrinsic antibacterial activity. Colloids Surf A Physicochem Eng Asp. 2022;645:128934.
Article
CAS
Google Scholar
Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angew Chem Int Ed. 2019;58:946–56.
Article
CAS
Google Scholar
Tang Z, Zhao P, Wang H, Liu Y, Bu W. Biomedicine meets Fenton chemistry. Chem Rev. 2021;121:1981–2019.
Article
CAS
PubMed
Google Scholar
Song M, Cheng Y, Tian Y, Chu C, Zhang C, Lu Z, Chen X, Pang X, Liu G. Sonoactivated chemodynamic therapy: A robust ROS generation nanotheranostic eradicates multidrug-resistant bacterial infection. Adv Funct Mater. 2020;30:2003587.
Article
CAS
Google Scholar
Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed. 2014;53:8127–31.
Article
CAS
Google Scholar
Neissa J, Pérez-Arnaiz C, Porto V, Busto N, Borrajo E, Leal JM, López-Quintela MA, García B, Dominguez F. Interaction of silver atomic quantum clusters with living organisms: bactericidal effect of Ag3 clusters mediated by disruption of topoisomerase-DNA complexes. Chem Sci. 2015;6:6717–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng J, Gao Y, Li W, Wang J, Chen X. Gold nanoclusters exert antibacterial effects against gram-negative bacteria by targeting thiol-redox homeostasis. Talanta. 2021;234:122618.
Article
CAS
PubMed
Google Scholar
Gong F, Peng R, Wu Q, Zhang H, Luo Y, Cui Q. Imidazole-stabilized gold nanoclusters with thiol depletion capacity for antibacterial application. Colloids Surf A Physicochem Eng Asp. 2022;641:128608.
Article
CAS
Google Scholar
Ndugire W, Raviranga NGH, Lao J, Ramström O, Yan M. Gold nanoclusters as nanoantibiotic auranofin analogues. Adv Healthcare Mater. 2022;11:2101032.
Article
CAS
Google Scholar
Buceta D, Busto N, Barone G, Leal JM, Domínguez F, Giovanetti LJ, Requejo FG, García B. López-Quintela López MA. Ag2 and Ag3 clusters: synthesis, characterization, and interaction with DNA. Angew Chem Int Ed. 2015;54:7612–6.
Article
CAS
Google Scholar
Liang J, Xiong H, Wang W, Wen W, Zhang X, Wang S. “Luminescent-off/on” sensing mechanism of antibiotic-capped gold nanoclusters to phosphate-containing metabolites and its antibacterial characteristics. Sens Actuat B Chem. 2018;255:2170–8.
Article
CAS
Google Scholar
Kalita S, Kandimalla R, Bhowal AC, Kotoky J, Kundu S. Functionalization of β-lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Sci Rep. 2018;8:1–13.
Article
CAS
Google Scholar
Li Q, Pan Y, Chen T, Du Y, Ge H, Zhang B, Xie J, Yu H, Zhu M. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale. 2018;10:10166–72.
Article
CAS
PubMed
Google Scholar
Setyawati MI, Kutty RV, Tay CY, Yuan X, Xie J, Leong DT. Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Appl Mater Interfaces. 2014;6:21822–31.
Article
CAS
PubMed
Google Scholar
Zeng J, Guo Z, Wang Y, Qin Z, Ma Y, Jiang H, Weizmann Y, Wang X. Intelligent bio-assembly imaging-guided platform for real-time bacteria sterilizing and infectious therapy. Nano Res. 2022;15:4164–74.
Article
CAS
Google Scholar
Xie Y, Zheng W, Jiang X. Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12:9041–9.
Article
CAS
PubMed
Google Scholar
Hwang GB, Wu G, Shin J, Panariello L, Sebastian V, Karu K, Allan E, Gavriilidis A, Parkin IP. Continuous single-phase synthesis of [Au25(Cys)18] nanoclusters and their photobactericidal enhancement. ACS Appl Mater Interfaces. 2020;12:49021–9.
Article
CAS
PubMed
Google Scholar
Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu K, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light. Nat Commun. 2020;11:1207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakal-Chidiac A, García O, García-Fernández L, Martín-Saavedra FM, Sánchez-Casanova S, Escudero-Duch C, Román JS, Vilaboa N, Aguilar MR. Chitosan-stabilized silver nanoclusters with luminescent, photothermal and antibacterial properties. Carbohyd Poly. 2020;250:116973.
Article
CAS
Google Scholar
Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.
Article
CAS
PubMed
Google Scholar
Xie Y, Yang J, Zhang J, Zheng W, Jiang X. Activating the antibacterial effect of 4,6-diamino-2-pyrimidinethio-modified gold nanoparticles by reducing their sizes. Angew Chem Int Ed. 2020;59:23471–5.
Article
CAS
Google Scholar
Lin F, Qi Q, Zhang J, Zhou W, Zhang J, Fu P, Zhang X, Qiao X, Liu M, Pang X, Cui Z. From unimolecular template to silver nanocrystal clusters: An effective strategy to balance antibacterial activity and cytotoxicity. ACS Appl Mater Interfaces. 2021;13:39806–18.
Article
CAS
PubMed
Google Scholar
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic nanocrystals: syntheses, properties, and applications. Chem Rev. 2016;116:10414–72.
Article
CAS
PubMed
Google Scholar
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev. 2020;49:6443–514.
Article
PubMed
Google Scholar
Zheng Y, Jiang H, Wang X. Multiple strategies for controlled synthesis of atomically precise alloy nanoclusters. Acta Phys Chim Sin. 2018;34:740–54.
Article
CAS
Google Scholar
Zhang Y, Shao Z, Yuan W, Xu H, You X, Liao X. Green and rapid synthesis of cysteine-directed novel AgCu nanocluster hydrogel with good antibacterial activity. Materialia. 2021;20:101232.
Article
CAS
Google Scholar
Tang Z, Liu S, Chen N, Luo M, Wu J, Zheng Y. Gold nanoclusters treat intracellular bacterial infections: eliminating phagocytic pathogens and regulating cellular immune response. Colloids Surf B Biointerfaces. 2021;205:111899.
Article
CAS
PubMed
Google Scholar
Meng J, Hu Z, He M, Wang J, Chen X. Gold nanocluster surface ligand exchange: An oxidative stress amplifier for combating multidrug resistance bacterial infection. J Colloid Interface Sci. 2021;602:846–58.
Article
CAS
PubMed
Google Scholar
Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL, Somoza Á. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl Mater Interfaces. 2016;8:10147–54.
Article
CAS
PubMed
Google Scholar
Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small. 2018;14:1800185.
Article
CAS
Google Scholar
Wang L, Li S, Yin J, Yang J, Li Q, Zheng W, Liu S, Jiang X. The density of surface coating can contribute to different antibacterial activities of gold nanoparticles. Nano Lett. 2020;20:5036–42.
Article
CAS
PubMed
Google Scholar
Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2:114–22.
Article
CAS
PubMed
Google Scholar
Gupta A, Das R, Tonga GY, Mizuhara T, Rotello VM. Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano. 2018;12:89–94.
Article
CAS
PubMed
Google Scholar
Wu J, Li F, Hu X, Lu J, Sun X, Gao J, Ling D. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent Sci. 2019;5:1366–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goswami N, Bright R, Visalakshan RM, Biswas B, Zilm P, Vasilev K. Core-in-cage structure regulated properties of ultra-small gold nanoparticles. Nanoscale Adv. 2019;1:2356–64.
CAS
Google Scholar
Wang YW, Tang H, Wu D, Liu D, Liu Y, Cao A, Wang H. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3:788–98.
Article
CAS
Google Scholar
Zhang J, Chen YP, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J Am Chem Soc. 2014;136:4873–6.
Article
CAS
PubMed
Google Scholar
Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci. 2019;546:1–10.
Article
CAS
PubMed
Google Scholar
Zheng K, Setyawati MI, Lim TP, Leong DT, Xie J. Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano. 2016;10:7934–42.
Article
CAS
PubMed
Google Scholar
Chen W, Chang H, Lu J, Huang Y, Harroun SG, Tseng Y, Li Y, Huang C, Chang H. Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Funct Mater. 2015;25:7189–99.
Article
CAS
Google Scholar
Ye Z, Zhu H, Zhang S, Li J, Wang J, Wang E. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. J Mater Chem B. 2021;9:307–13.
Article
CAS
PubMed
Google Scholar
Hu W, Younis MR, Zhou Y, Wang C, Xia X. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16:2000553.
Article
CAS
Google Scholar
Li X, Li S, Bai Q, Sui N, Zhu Z. Gold nanoclusters decorated amine-functionalized graphene oxide nanosheets for capture, oxidative stress, and photothermal destruction of bacteria. Colloids Surf B Biointerfaces. 2020;196:111313.
Article
CAS
PubMed
Google Scholar
Zheng K, Li K, Chang T, Xie J, Chen P. Synergistic antimicrobial capability of magnetically oriented graphene oxide conjugated with gold nanoclusters. Adv Funct Mater. 2019;29:1904603.
Article
CAS
Google Scholar
Zheng K, Li S, Jing L, Chen P, Xie J. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv Healthcare Mater. 2020;9:2001007.
Article
CAS
Google Scholar
Li M, Huang L, Wang X, Song Z, Zhao W, Wang Y, Liu J. Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications. J Colloid Interface Sci. 2018;529:444–51.
Article
CAS
PubMed
Google Scholar
Zou X, Zhang L, Wang Z, Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J Am Chem Soc. 2016;138:2064–77.
Article
CAS
PubMed
Google Scholar
Girija AR, Balasubramanian S, Bright R, Cowin AJ, Goswami N, Vasilev K. Ultrasmall gold nanocluster based antibacterial nanoaggregates for infectious wound healing. ChemNanoMat. 2019;5:1176–81.
Article
CAS
Google Scholar
Wang X, Wang Z, Fang S, Hou Y, Du X, Xie Y, Xue Q, Zhou X, Yuan X. Injectable Ag nanoclusters-based hydrogel for wound healing via eliminating bacterial infection and promoting tissue regeneration. Chem Eng J. 2021;420:127589.
Article
CAS
Google Scholar
Liu J, Liu L, Li S, Kang Q, Zhang R, Zhu Z. Self-assembled nanogels of luminescent thiolated silver nanoclusters and chitosan as bactericidal agent and bacterial sensor. Mater Sci Eng C. 2021;118:111520.
Article
CAS
Google Scholar
Zhu H, Li J, Wang E. Lighting up the gold nanoclusters via host-guest recognition for high-efficiency antibacterial performance and imaging. ACS Appl Mater Interfaces. 2019;11:36831–8.
Article
CAS
PubMed
Google Scholar
Liu X, Cheng Z, Wen H, Zhang S, Chen M, Wang J. Hybrids of upconversion nanoparticles and silver nanoclusters ensure superior bactericidal capability via combined sterilization. ACS Appl Mater Interfaces. 2020;12:51285–92.
Article
CAS
PubMed
Google Scholar
Liu J, Li S, Fang Y, Zhu Z. Boosting antibacterial activity with mesoporous silica nanoparticles supported silver nanoclusters. J Colloid Interface Sci. 2019;555:470–9.
Article
CAS
PubMed
Google Scholar
Chu G, Zhang C, Liu Y, Cao Z, Wang L, Chen Y, Zhou W, Gao G, Wang K, Cui D. A gold nanocluster constructed mixed-metal metal-organic network film for combating implant-associated infections. ACS Nano. 2020;14:15633–45.
Article
PubMed
CAS
Google Scholar
Xie Y, Zhang M, Zhang W, Liu X, Zheng W, Jiang X. Gold nanoclusters-coated orthodontic devices can inhibit the formation of Streptococcus mutans biofilm. ACS Biomater Sci Eng. 2020;6:1239–46.
Article
CAS
PubMed
Google Scholar
Wang L, Hou Q, Zheng W, Jiang X. Fluorescent and antibacterial aminobenzeneboronic acid (ABA)-modified gold nanoclusters for self-monitoring residual dosage and smart wound care. ACS Nano. 2021;15:17885–94.
Article
CAS
Google Scholar
Zhuo Y, Zhang Y, Wang B, Cheng S, Yuan R, Liu S, Zhao M, Xu B, Zhang Y, Wang X. Gold nanocluster & indocyanine green based triple-effective therapy for MRSA infected central nervous system. Appl Mater Today. 2022;27:101453.
Article
Google Scholar
Wang Y, Cai R, Chen C. The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc Chem Res. 2019;52:1507–18.
Article
CAS
PubMed
Google Scholar
Zheng Y, Wang X, Jiang H. Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters. Sensor Actuat B Chem. 2018;277:388–93.
Article
CAS
Google Scholar
Tang H, Li Q, Yan W, Jiang X. Reversing the chirality of surface ligands can improve the biosafety and pharmacokinetics of cationic gold nanoclusters. Angew Chem Int Ed. 2021;60:13829–34.
Article
CAS
Google Scholar
Peng Z, Yuan L, XuHong J, Tian H, Zhang Y, Deng J, Qi X. Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation. J Nanobiotechnol. 2021;19:220.
Article
Google Scholar
Li J, Gao G, Tang X, Yu M, He M, Sun T. Isomeric effect of nano-inhibitors on Aβ40 fibrillation at the nano-bio interface. ACS Appl Mater Interfaces. 2021;13:4894–904.
Article
CAS
PubMed
Google Scholar
Marrache S, Dhar S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci USA. 2012;109:16288–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
ZhaoY, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration. 2022;1:20210089.