Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res. 2021;28:97–109.
Article
CAS
PubMed
Google Scholar
Hu X-C, Lu Y-B, Yang Y-N, Kang X-W, Wang Y-G, Ma B, Xing S. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? Neural Regen Res. 2021;16:405–13.
Article
PubMed
Google Scholar
Liu W-Z, Ma Z-J, Li J-R, Kang X-W. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02153-8.
Article
PubMed
PubMed Central
Google Scholar
Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L. An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater. 2021;6:4816–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Luo Y, Ning C, Zhang W, Zhang Q, Zou H, Fu C. Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01031-y.
Article
Google Scholar
Lee B-C, Kang I, Yu K-R. Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med. 2021. https://doi.org/10.3390/jcm10040711.
Article
PubMed
PubMed Central
Google Scholar
Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine. J Transl Med. 2020. https://doi.org/10.1186/s12967-020-02622-3.
Article
PubMed
PubMed Central
Google Scholar
Zhai X, Chen K, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, et al. Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01022-z.
Article
Google Scholar
Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang K, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01123-9.
Article
Google Scholar
Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y, Hu J. Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote functional healing after spinal cord injury. Front Cell Neurosci. 2021. https://doi.org/10.3389/fncel.2021.725573.
Article
PubMed
PubMed Central
Google Scholar
Romanelli P, Bieler L, Scharler C, Pachler K, Kreutzer C, Zaunmair P, Jakubecova D, Mrowetz H, Benedetti B, Rivera FJ, et al. Extracellular vesicles can deliver anti-inflammatory and anti-scarring activities of mesenchymal stromal cells after spinal cord injury. Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.01225.
Article
PubMed
PubMed Central
Google Scholar
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: progress and challenges. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00665.
Article
PubMed
PubMed Central
Google Scholar
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: sources, characteristics, and application in regenerative medicine. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118002.
Article
PubMed
Google Scholar
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019. https://doi.org/10.3390/cells8070727.
Article
PubMed
PubMed Central
Google Scholar
Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci. 2016;44:2114–9.
Article
PubMed
Google Scholar
Shiue S-J, Rau R-H, Shiue H-S, Hung Y-W, Li Z-X, Yang KD, Cheng J-K. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain. 2019;160:210–23.
Article
CAS
PubMed
Google Scholar
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia. 2020;68:227–45.
Article
PubMed
Google Scholar
Llorens-Bobadilla E, Chell JM, Le Merre P, Wu Y, Zamboni M, Bergenstrahle J, Stenudd M, Sopova E, Lundeberg J, Shupliakov O, et al. A latent lineage potential in resident neural stem cells enables spinal cord repair. Science. 2020;370:73.
Article
CAS
Google Scholar
Zhang H, Fang X, Huang DK, Luo QL, Zheng MJ, Wang KK, Cao L, Yin ZS. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol Med Rep. 2018;17:264–72.
CAS
PubMed
Google Scholar
Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin HQ, Katakowski M, Wang FJ, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48:747–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Nooshabadi VT, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: an in vivo study. J Biomed Mater Res Part A. 2020;108:545–56.
Article
CAS
Google Scholar
Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6:2754–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered double hydroxide nanoparticles with osteogenic effects as miRNA carriers to synergistically promote osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13:48386–402.
Article
CAS
PubMed
Google Scholar
Canonico S. The use of human fibrin glue in the surgical operations. Acta Biomed Atenei Parm. 2003;74(Suppl 2):21–5.
Google Scholar
Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry. 2017. https://doi.org/10.1038/s41398-017-0008-3.
Article
PubMed
PubMed Central
Google Scholar
Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA. Functional genomic analysis of oligodendrocyte differentiation. J Neurosci. 2006;26:10967–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 2009;30:4695–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tseng T-C, Tao L, Hsieh F-Y, Wei Y, Chiu I-M, Hsu S-H. An injectable, self-healing hydrogel to repair the central nervous system. Adv Mater. 2015;27:3518–24.
Article
CAS
PubMed
Google Scholar
Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10:17742–55.
Article
CAS
PubMed
Google Scholar
Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.
Article
CAS
PubMed
Google Scholar
Loken LS, Braz JM, Etlin A, Sadeghi M, Bernstein M, Jewell M, Steyert M, Kuhn J, Hamel K, Llewellyn-Smith IJ, Basbaum A. Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. Elife. 2021. https://doi.org/10.7554/eLife.59751.
Article
PubMed
PubMed Central
Google Scholar
Zhang Z, Zhong P, Hu F, Barger Z, Ren YL, Ding XL, Li SZ, Weber R, Chung SJ, Palmiter RD, Dan Y. An excitatory circuit in the perioculomotor midbrain for non-rem sleep control. Cell. 2019;177:1293.
Article
CAS
PubMed
Google Scholar
Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B, et al. Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev Cell. 2006;11:831–44.
Article
CAS
PubMed
Google Scholar
Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.
Article
PubMed
Google Scholar
Baldauf L, Endres T, Scholz J, Kirches E, Ward DM, Lessmann V, Borucki K, Mawrin C. Mitoferrin-1 is required for brain energy metabolism and hippocampus-dependent memory. Neurosci Lett. 2019. https://doi.org/10.1016/j.neulet.2019.134521.
Article
PubMed
PubMed Central
Google Scholar
Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S. Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med. 2017;23:818–28.
Article
CAS
PubMed
Google Scholar
Winter SV, Karayel O, Strauss MT, Padmanabhan S, Surface M, Merchant K, Alcalay RN, Mann M. Urinary proteome profiling for stratifying patients with familial Parkinson’s disease. Embo Mol Med. 2021. https://doi.org/10.15252/emmm.202013257.
Article
PubMed
PubMed Central
Google Scholar
Beckmann ND, Lin W-J, Wang M, Cohain AT, Charney AW, Wang P, Ma W, Wang Y-C, Jiang C, Audrain M, et al. Multiscale causal networks identify VGF as a key regulator of Alzheimer’s disease. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-17405-z.
Article
PubMed
PubMed Central
Google Scholar
Mizoguchi T, Hara H, Shimazawa M. VGF has roles in the pathogenesis of major depressive disorder and schizophrenia: evidence from transgenic mouse models. Cell Mol Neurobiol. 2019;39:721–7.
Article
PubMed
Google Scholar
Hesp ZC, Goldstein EA, Miranda CJ, Kaspar BK, McTigue DM. Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats. J Neurosci. 2015;35:1274–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66:1218–22.
Article
CAS
PubMed
Google Scholar
Selle H, Lamerz J, Buerger K, Dessauer A, Hager K, Hampel H, Karl J, Kellmann M, Lannfelt L, Louhija J, et al. Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb Chem High Throughput Screen. 2005;8:801–6.
Article
CAS
PubMed
Google Scholar
Meng S, Whitt AG, Tu A, Eaton JW, Li C, Yaddanapudi K. Isolation of exosome-enriched extracellular vesicles carrying granulocyte-macrophage colony-stimulating factor from embryonic stem cells. J Vis Exp. 2021. https://doi.org/10.3791/60170.
Article
PubMed
Google Scholar
Sun J, Lu Z, Fu W, Lu K, Gu X, Xu F, Dai J, Yang Y, Jiang J. Exosome-derived ADAM17 promotes liver metastasis in colorectal cancer. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.734351.
Article
PubMed
PubMed Central
Google Scholar
Chen Z, Tang HB, Kang JJ, Chen ZY, Li YL, Fan QY, Zhang L, Song YH, Zhang GL, Fan H. Necroptotic astrocytes induced neuronal apoptosis partially through EVs-derived pro-BDNF. Brain Res Bull. 2021;177:73–80.
Article
CAS
PubMed
Google Scholar
El Gaamouch F, Audrain M, Lin W-J, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial function through C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020. https://doi.org/10.1186/s13024-020-0357-x.
Article
PubMed
PubMed Central
Google Scholar
Lewis JE, Brameld JM, Hill P, Cocco C, Noli B, Ferri G-L, Barrett P, Ebling FJP, Jethwa PH. Hypothalamic over-expression of VGF in the Siberian hamster increases energy expenditure and reduces body weight gain. Plos ONE. 2017;12:e0172724.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li C, Li M, Yu H, Shen X, Wang J, Sun X, Wang Q, Wang C. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-lnduced memory deficits and anxiety-like and depression-like behaviors in mice: the role of BDNF/TrkB signaling. ACS Chem Neurosci. 2017;8:2005–18.
Article
CAS
PubMed
Google Scholar
Lin W-J, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM, Salton SR. VGF and its C-terminal peptide TLQP-62 regulate memory formation in hippocampus via a BDNF-TrkB-dependent mechanism. J Neurosci. 2015;35:10343–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L, Zhu R. Bioactive 2D nanomaterials for neural repair and regeneration. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114379.
Article
PubMed
Google Scholar
Hsu J-M, Shiue S-J, Yang KD, Shiue H-S, Hung Y-W, Pannuru P, Poongodi R, Lin H-Y, Cheng J-K. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats. J Pain Res. 2020;13:3257–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, Liu L, Zhao W, Han Z, Kong D, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment. ACS Appl Mater Interfaces. 2018;10:30081–91.
Article
CAS
PubMed
Google Scholar
Rao F, Zhang D, Fang T, Lu C, Wang B, Ding X, Wei S, Zhang Y, Pi W, Xu H, et al. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve regeneration. Stem Cells Int. 2019. https://doi.org/10.1155/2019/2546367.
Article
PubMed
PubMed Central
Google Scholar
Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17:587–91.
Article
CAS
PubMed
Google Scholar
Kadoya K, Lu P, Kenny N, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strob H, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22:479–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018;24:484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kupcsik L, Alini M, Stoddart MJ. Epsilon-aminocaproic acid is a useful fibrin degradation inhibitor for cartilage tissue engineering. Tissue Eng Part A. 2009;15:2309–13.
Article
CAS
PubMed
Google Scholar
Edgar W, Warrell MJ, Warrell DA, Prentice CRM. Structure of soluble fibrin complexes and fibrin degradation products after echis-carinatus bite. Br J Haematol. 1980;44:471–81.
Article
CAS
PubMed
Google Scholar
Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Part A. 2010;16:3261–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrick S, Blanc-Brude O, Gray A, Laurent G. Fibrinogen. Int J Biochem Cell Biol. 1999;31:741–6.
Article
CAS
PubMed
Google Scholar
Naito M, Stirk CM, Smith EB, Thompson WD. Smooth muscle cell outgrowth stimulated by fibrin degradation products: the potential role of fibrin fragment E in restenosis and atherogenesis. Thromb Res. 2000;98:165–74.
Article
CAS
PubMed
Google Scholar
Alvarez-Saavedra M, De Repentigny Y, Yang D, O’Meara RW, Yan K, Hashem LE, Racacho L, Ioshikhes I, Bulman DE, Parks RJ, et al. Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice. Cell Rep. 2016;17:862–75.
Article
CAS
PubMed
Google Scholar
He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, Wen X, Cheng L, Zhu R. MgFe-LDH nanoparticles: a promising leukemia inhibitory factor replacement for self-renewal and pluripotency maintenance in cultured mouse embryonic stem cells. Adv Sci. 2021. https://doi.org/10.1002/advs.202003535.
Article
Google Scholar