Nagaraj R, Bijukumar DR, Mathew B, Scott EA, Mathew MT. A review on recent advancements in ophthalmology devices: currently in market and under clinical trials. J Drug Deliv Sci Technol. 2019;52:334–45.
Article
Google Scholar
Balantrapu T. Latest global blindness & VI prevalence figures published in Lancet. 2018. www.iapb.org/news/latest-global-blindness-vi-prevalence-figures-published-lancet. Accessed 5 Jan 2017.
Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoenfeld ER, Greene JM, Wu SY, Leske MC. Patterns of adherence to diabetes vision care guidelines: baseline findings from the Diabetic Retinopathy Awareness Program. Ophthalmology. 2001;108(3):563–71.
Article
CAS
PubMed
Google Scholar
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281–91.
Article
PubMed
Google Scholar
Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells. J Drug Deliv Sci Technol. 2021;61: 102107.
Article
CAS
Google Scholar
Adlravan E, Nejati K, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M. Potential activity of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol. 2021;61: 102256.
Article
CAS
Google Scholar
Mousazadeh H, Pilehvar-Soltanahmadi Y, Dadashpour M, Zarghami N. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy. J Control Release. 2021;330:1046–70.
Article
CAS
PubMed
Google Scholar
Bargahi N, Ghasemali S, Jahandar-Lashaki S, Nazari A. Recent advances for cancer detection and treatment by microfluidic technology, review and update. Biol Proced Online. 2022;24(1):1–20.
Article
Google Scholar
Ghasemali S, Farajnia S, Barzegar A, Rahmati-Yamchi M, Baghban R, Rahbarnia L, et al. New developments in anti-angiogenic therapy of cancer, review and update. Anticancer Agents Med Chem. 2021;21(1):3–19.
Article
CAS
PubMed
Google Scholar
Raghava S, Goel G, Kompella UB. Ophthalmic applications of nanotechnology. In: Tombran-Tink J, Barnstable CJ, editors. Ocular transporters in ophthalmic diseases and drug delivery. Humana Press; 2008. p. 415–35. https://doi.org/10.1007/978-1-59745-375-2_22. Print ISBN: 978-1-58829-958-1, Online ISBN: 978-1-59745-375-2.
Amrite AC, Kompella UB. Nanoparticles for ocular drug delivery. Nanoparticle technology for drug delivery. CRC Press; 2006. p. 343-84. https://doi.org/10.1201/9780849374555.ch11
Kompella UB, Amrite AC, Ravi RP, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmadkhani L, Mostafavi E, Ghasemali S, Baghban R, Pazoki-Toroudi H, Davaran S, et al. Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the treatment of cancer. Artif Cells Nanomed Biotechnol. 2019;47(1):873–81.
Article
CAS
PubMed
Google Scholar
Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci. 2022. https://doi.org/10.1002/advs.202003699.
Article
Google Scholar
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and nanodiagnosis of prostate cancer: recent updates. Nanomaterials. 2020;10(9):1696.
Article
CAS
PubMed Central
Google Scholar
Barani M, Mukhtar M, Rahdar A, Sargazi G, Thysiadou A, Kyzas GZ. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules. 2021;26(1):186.
Article
CAS
PubMed Central
Google Scholar
Barani M, Nematollahi MH, Zaboli M, Mirzaei M, Torkzadeh-Mahani M, Pardakhty A, et al. In silico and in vitro study of magnetic niosomes for gene delivery: the effect of ergosterol and cholesterol. Mater Sci Eng C. 2019;94:234–46.
Article
CAS
Google Scholar
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers. 2020;12(6):1397.
Article
CAS
PubMed Central
Google Scholar
Davarpanah F, Yazdi AK, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. DARU J Pharm Sci. 2018;26(1):57–64.
Article
CAS
Google Scholar
Ebrahimi AK, Barani M, Sheikhshoaie I. Fabrication of a new superparamagnetic metal-organic framework with core-shell nanocomposite structures: characterization, biocompatibility, and drug release study. Mater Sci Eng C. 2018;92:349–55.
Article
CAS
Google Scholar
Ghazy E, Rahdar A, Barani M, Kyzas GZ. Nanomaterials for Parkinson disease: recent progress. J Mol Struct 2021;1231:129698. https://doi.org/10.1016/j.molstruc.2020.129698.
Article
CAS
Google Scholar
Hajizadeh MR, Maleki H, Barani M, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. In vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents. Res Pharm Sci. 2019;14(5):448.
Article
PubMed
PubMed Central
Google Scholar
Zahin N, Anwar R, Tewari D, Kabir M, Sajid A, Mathew B, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res. 2020;27(16):19151–68.
Article
CAS
Google Scholar
Si X-Y, Merlin D, Xiao B. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease. World J Gastroenterol. 2016;22(34):7718.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonilla L, Espina M, Severino P, Cano A, Ettcheto M, Camins A, et al. Lipid nanoparticles for the posterior eye segment. Pharmaceutics. 2021;14(1):90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, et al. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10(7):1403.
Article
CAS
PubMed Central
Google Scholar
Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21(6 suppl):3–9.
Article
Google Scholar
Chong DY, Johnson MW, Huynh TH, Hall EF, Comer GM, Fish DN. Vitreous penetration of orally administered famciclovir. Am J Ophthalmol. 2009;148(1):38-42.e1.
Article
CAS
PubMed
Google Scholar
Srinivas A, Azad RV, Sharma YR, Kumar A, Satpathy G, Velpandian T. Evaluation of vitreous levels of gatifloxacin after systemic administration in inflamed and non-inflamed eyes. Acta Ophthalmol. 2009;87(6):648–52.
Article
PubMed
CAS
Google Scholar
Kim H, Robinson MR, Lizak MJ, Tansey G, Lutz RJ, Yuan P, et al. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2004;45(8):2722–31.
Article
PubMed
Google Scholar
Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4(4):371–88.
Article
CAS
PubMed
Google Scholar
Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol. 2010;5(1):75–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40(5):687–96.
Article
CAS
PubMed
Google Scholar
SomsanguanAusayakhun M, Yuvaves P. Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai. 2005;88(9):S15-20.
Google Scholar
Ranta V-P, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–81.
Article
CAS
PubMed
Google Scholar
Ambati J, Adamis AP. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.
Article
CAS
PubMed
Google Scholar
Geroski DH, Edelhauser HF. Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev. 2001;52(1):37–48.
Article
CAS
PubMed
Google Scholar
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1(1):99–114.
Article
PubMed
Google Scholar
Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–54.
Article
CAS
PubMed
Google Scholar
Ranta V-P, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148(1):42–8.
Article
CAS
PubMed
Google Scholar
Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16(5–6):270–7.
Article
CAS
PubMed
Google Scholar
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel SR, Lin AS, Edelhauser HF, Prausnitz MR. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm Res. 2011;28(1):166–76.
Article
CAS
PubMed
Google Scholar
Einmahl S, Savoldelli M, Dhermies FO, Tabatabay C, Gurny R, Behar-Cohen F. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci. 2002;43(5):1533–9.
PubMed
Google Scholar
Olsen TW, Feng X, Wabner K, Conston SR, Sierra DH, Folden DV, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777-87.e2.
Article
CAS
PubMed
Google Scholar
Liu S, Liu W, Ma Y, Liu K, Wang M. Suprachoroidal injection of ketorolac tromethamine does not cause retinal damage. Neural Regen Res. 2012;7(35):2770.
CAS
PubMed
PubMed Central
Google Scholar
Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Ophthalmol Vis Sci. 2007;48(5):2230–7.
Article
Google Scholar
Singh SR, Dogra M, Singh R, Dogra MR. Accidental globe perforation during posterior sub-tenon’s injection of triamcinolone acetonide. Ophthalmic Surg Lasers Imaging Retina. 2019;50(7):466–7.
Article
PubMed
Google Scholar
Thorne JE, Sugar EA, Holbrook JT, Burke AE, Altaweel MM, Vitale AT, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the treatment of uveitic macular edema: the PeriOcular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126(2):283–95.
Article
PubMed
Google Scholar
Sen HN, Vitale S, Gangaputra SS, Nussenblatt RB, Liesegang TL, Levy-Clarke GA, et al. Periocular corticosteroid injections in uveitis: effects and complications. Ophthalmology. 2014;121(11):2275–86.
Article
PubMed
Google Scholar
Lafranco Dafflon M, Tran VT, Guex-Crosier Y, Herbort CP. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol. 1999;237(4):289–95.
Article
CAS
PubMed
Google Scholar
Ghazy E, Kumar A, Barani M, Kaur I, Rahdar A, Behl T. Scrutinizing the therapeutic and diagnostic potential of nanotechnology in thyroid cancer: edifying drug targeting by nano-oncotherapeutics. J Drug Deliv Sci Technol. 2021;61: 102221.
Article
CAS
Google Scholar
Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine. 2013;8:495.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12.
Article
PubMed Central
CAS
Google Scholar
Cai W, Chen Q, Shen T, Yang Q, Hu W, Zhao P, et al. Intravenous anti-VEGF agents with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine green for imaging and treatment of laser-induced choroidal neovascularization. Biomater Sci. 2020;8(16):4481–91.
Article
CAS
PubMed
Google Scholar
Nguyen VP, Qian W, Li Y, Liu B, Aaberg M, Henry J, et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging. Nat Commun. 2021;12(1):1–14.
Article
CAS
Google Scholar
Golabchi K, Soleimani-Jelodar R, Aghadoost N, Momeni F, Moridikia A, Nahand JS, et al. MicroRNAs in retinoblastoma: potential diagnostic and therapeutic biomarkers. J Cell Physiol. 2018;233(4):3016–23.
Article
CAS
PubMed
Google Scholar
Chen X-J, Zhang X-Q, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnology. 2018;16(1):1–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mukhtar M, Bilal M, Rahdar A, Barani M, Arshad R, Behl T, et al. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors. 2020;8(4):117.
Article
CAS
Google Scholar
Nikazar S, Barani M, Rahdar A, Zoghi M, Kyzas GZ. Photo-and magnetothermally responsive nanomaterials for therapy, controlled drug delivery and imaging applications. ChemistrySelect. 2020;5(40):12590–609.
Article
CAS
Google Scholar
Rahdar A, Taboada P, Hajinezhad MR, Barani M, Beyzaei H. Effect of tocopherol on the properties of Pluronic F127 microemulsions: physico-chemical characterization and in vivo toxicity. J Mol Liq. 2019;277:624–30.
Article
CAS
Google Scholar
Sabir F, Barani M, Rahdar A, Bilal M, Nadeem M. How to face skin cancer with nanomaterials: a review. Biointerface Res Appl Chem. 2021;11:11931–55.
CAS
Google Scholar
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12(1):1–13.
Article
CAS
Google Scholar
Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi AF. Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model. Int J Radiat Biol. 2020;96(12):1614–27.
Article
CAS
PubMed
Google Scholar
Nguyen VP, Li Y, Qian W, Liu B, Tian C, Zhang W, et al. Contrast agent enhanced multimodal photoacoustic microscopy and optical coherence tomography for imaging of rabbit choroidal and retinal vessels in vivo. Sci Rep. 2019;9(1):1–17.
Article
CAS
Google Scholar
Lapierre-Landry M, Gordon AY, Penn JS, Skala MC. In vivo photothermal optical coherence tomography of endogenous and exogenous contrast agents in the eye. Sci Rep. 2017;7(1):1–9.
Article
CAS
Google Scholar
Tzameret A, Ketter-Katz H, Edelshtain V, Sher I, Corem-Salkmon E, Levy I, et al. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J Nanobiotechnology. 2019;17(1):1–11.
Article
Google Scholar
Jaidev L, Chellappan DR, Bhavsar DV, Ranganathan R, Sivanantham B, Subramanian A, et al. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomater. 2017;49:422–33.
Article
CAS
PubMed
Google Scholar
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, et al. Multi-functionalized nanomaterials and nanoparticles for diagnosis and treatment of retinoblastoma. Biosensors. 2021;11(4):97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmani Javan E, Lotfi F, Jafari-Gharabaghlou D, Mousazadeh H, Dadashpour M, Zarghami N. Development of a magnetic nanostructure for co-delivery of metformin and silibinin on growth of lung cancer cells: Possible action through leptin gene and its receptor regulation. Asian Pac J Cancer Prev. 2022;23(2):519–27.
Article
PubMed
Google Scholar
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11.
Article
CAS
PubMed
Google Scholar
Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the magnetic hyperthermia response using different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials. 2021;11(3):627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan M, Reyes-Ortega F, Schneider-Futschik EK. Successes and challenges: inhaled treatment approaches using magnetic nanoparticles in cystic fibrosis. Magnetochemistry. 2020;6(2):25.
Article
CAS
Google Scholar
Avasthi A, Caro C, Pozo‑Torres E, Leal MP, García‑Martín ML. Magnetic nanoparticles as MRI contrast agents. In: Surface-modified Nanobiomaterials for Electrochemical and Biomedicine Applications 2020, 49–91. https://doi.org/10.1007/978-3-030-55502-3_3
Shabatina TI, Vernaya OI, Shabatin VP, Melnikov MY. Magnetic nanoparticles for biomedical purposes: modern trends and prospects. Magnetochemistry. 2020;6(3):30.
Article
CAS
Google Scholar
Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Clust Sci. 2021. https://doi.org/10.1007/s10876-020-01955-9.
Article
Google Scholar
Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules. 2020;25(14):3159.
Article
CAS
PubMed Central
Google Scholar
Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2(3):22–32.
Article
Google Scholar
Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31(11):3016–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baghban R, Afarid M, Soleymani J, Rahimi M. Were magnetic materials useful in cancer therapy? Biomed Pharmacother. 2021;144: 112321.
Article
CAS
PubMed
Google Scholar
Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D. 2003;36(13):R167.
Article
CAS
Google Scholar
Amsalem Y, Mardor Y, Feinberg MS, Landa N, Miller L, Daniels D, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation. 2007. https://doi.org/10.1161/CIRCULATIONAHA.106.680231.
Article
PubMed
Google Scholar
Yanai A, Häfeli UO, Metcalfe AL, Soema P, Addo L, Gregory-Evans CY, et al. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21(6):1137–48.
Article
PubMed
Google Scholar
Giannaccini M, Pedicini L, Di Leo N, Giannini M, Calatayud M, Goya G, et al. Nanoparticles as drug carrier for the posterior chamber of the eye. In: BioNanoMed 2015 - Abstract book; 2015.
Bae S, Jeoung JW, Jeun M, Jang J-T, Park JH, Kim YJ, et al. Magnetically softened iron oxide (MSIO) nanofluid and its application to thermally-induced heat shock proteins for ocular neuroprotection. Biomaterials. 2016;101:165–75.
Article
CAS
PubMed
Google Scholar
Zargarzadeh M, MadaahHosseini HR, Delavari H, Irajirad R, Aghaie E. Synthesis of magnetite (Fe3O4)—avastin nanocomposite as a potential drug for AMD treatment. Micro Nano Lett. 2018;13(8):1141–5.
Article
CAS
Google Scholar
Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. J Photochem Photobiol B Biol. 2018;183:133–6.
Article
CAS
Google Scholar
Demirci H, Slimani N, Pawar M, Kumon RE, Vaishnava P, Besirli CG. Magnetic hyperthermia in Y79 retinoblastoma and ARPE-19 retinal epithelial cells: tumor selective apoptotic activity of iron oxide nanoparticle. Transl Vis Sci Technol. 2019;8(5):18.
Article
PubMed
PubMed Central
Google Scholar
Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, et al. Magnetically assisted drug delivery of topical eye drops maintains retinal function in vivo in mice. Pharmaceutics. 2021;13(10):1650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7(6):753–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maleki MJ, Ghasemi Y, Pourhassan-Moghaddam M, Asadi N, Dadashpour M, Abolghasem Mohammadi S, et al. Effect of green GO/Au nanocomposite on in-vitro amplification of human DNA. IET Nanobiotechnol. 2019;13(9):887–90.
Article
PubMed
PubMed Central
Google Scholar
Cho W-K, Kang S, Choi H, Rho CR. Topically administered gold nanoparticles inhibit experimental corneal neovascularization in mice. Cornea. 2015;34(4):456–9.
Article
PubMed
Google Scholar
Salem HF, Ahmed SM, Omar MM. Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery. Drug Des Dev Ther. 2016;10:277.
Article
CAS
Google Scholar
Hoshikawa A, Tagami T, Morimura C, Fukushige K, Ozeki T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug delivery platform for age-related macular degeneration. J Drug Deliv Sci Technol. 2017;38:45–50.
Article
CAS
Google Scholar
Maulvi FA, Patil RJ, Desai AR, Shukla MR, Vaidya RJ, Ranch KM, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater. 2019;86:350–62.
Article
CAS
PubMed
Google Scholar
Dong Y, Wan G, Yan P, Qian C, Li F, Peng G. Fabrication of resveratrol coated gold nanoparticles and investigation of their effect on diabetic retinopathy in streptozotocin induced diabetic rats. J Photochem Photobiol. 2019;195:51–7.
Article
CAS
Google Scholar
Trigueros S, Domènech BE, Toulis V, Marfany G. In vitro gene delivery in retinal pigment epithelium cells by plasmid DNA-wrapped gold nanoparticles. Genes. 2019;10(4):289.
Article
CAS
PubMed Central
Google Scholar
Ayata N, Sezer AD, Bucak S, Turanlı ET. Preparation and in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug delivery. Brazilian J Pharm Sci. 2020. https://doi.org/10.1590/s2175-97902020000118171.
Article
Google Scholar
Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B. 2020;194: 111151.
Article
CAS
Google Scholar
Apaolaza P, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, et al. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: evaluation of the surface properties and effect on their distribution. Exp Eye Res. 2020;198: 108151.
Article
CAS
PubMed
Google Scholar
Sonntag T, Froemel F, Stamer WD, Ohlmann A, Fuchshofer R, Breunig M. Distribution of gold nanoparticles in the anterior chamber of the eye after intracameral injection for glaucoma therapy. Pharmaceutics. 2021;13(6):901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serati-Nouri H, Rasoulpoor S, Pourpirali R, Sadeghi-Soureh S, Esmaeilizadeh N, Dadashpour M, et al. In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sci. 2021;285: 119947.
Article
CAS
PubMed
Google Scholar
Rosenholm MJ, Sahlgren C, Lindén M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets. 2011;12(8):1166–86.
Article
CAS
PubMed
Google Scholar
Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, et al. Topical rose Bengal: Pre-clinical evaluation of pharmacokinetics and safety. Lasers Surg Med. 2003;32(2):101–10.
Article
PubMed
Google Scholar
Uppal A, Jain B, Gupta PK, Das K. Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines. Photochem Photobiol. 2011;87(5):1146–51.
Article
CAS
PubMed
Google Scholar
Park J-H, Jeong H, Hong J, Chang M, Kim M, Chuck RS, et al. The effect of silica nanoparticles on human corneal epithelial cells. Sci Rep. 2016;6(1):1–11.
Article
CAS
Google Scholar
Liao Y-T, Lee C-H, Chen S-T, Lai J-Y, Wu KCW. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmacotherapy of glaucoma. J Mater Chem B. 2017;5(34):7008–13.
Article
CAS
PubMed
Google Scholar
Kim S-N, Ko SA, Park CG, Lee SH, Huh BK, Park YH, et al. Amino-functionalized mesoporous silica particles for ocular delivery of brimonidine. Mol Pharm. 2018;15(8):3143–52.
Article
CAS
PubMed
Google Scholar
Lin YX, Hu XF, Zhao Y, Gao YJ, Yang C, Qiao SL, et al. Photothermal ring integrated intraocular lens for high-efficient eye disease treatment. Adv Mater. 2017;29(34):1701617.
Article
CAS
Google Scholar
Yang J, Gong X, Fang L, Fan Q, Cai L, Qiu X, et al. Potential of CeCl3@ mSiO2 nanoparticles in alleviating diabetic cataract development and progression. Nanomed Nanotechnol Biol Med. 2017;13(3):1147–55.
Article
CAS
Google Scholar
Hu C, Sun J, Zhang Y, Chen J, Lei Y, Sun X, et al. Local delivery and sustained-release of nitric oxide donor loaded in mesoporous silica particles for efficient treatment of primary open-angle glaucoma. Adv Healthc Mater. 2018;7(23):1801047.
Article
CAS
Google Scholar
Nagai N, Yamaoka S, Fukuoka Y, Ishii M, Otake H, Kanai K, et al. Enhancement in corneal permeability of dissolved carteolol by its combination with magnesium hydroxide nanoparticles. Int J Mol Sci. 2018;19(1):282.
Article
PubMed Central
CAS
Google Scholar
Nagai N, Ogata F, Otake H, Kawasaki N, Nakazawa Y, Kanai K, et al. Co-instillation of nano-solid magnesium hydroxide enhances corneal permeability of dissolved timolol. Exp Eye Res. 2017;165:118–24.
Article
CAS
PubMed
Google Scholar
Peterson GI, Dobrynin AV, Becker ML. Biodegradable shape memory polymers in medicine. Adv Healthc Mater. 2017;6(21):1700694.
Article
CAS
Google Scholar
Di Colo G, Zambito Y, Zaino C, Sansò M. Selected polysaccharides at comparison for their mucoadhesiveness and effect on precorneal residence of different drugs in the rabbit model. Drug Dev Ind Pharm. 2009;35(8):941–9.
Article
PubMed
CAS
Google Scholar
Lynch C, Kondiah PP, Choonara YE, du Toit LC, Ally N, Pillay V. Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers. 2019;11(8):1371.
Article
CAS
PubMed Central
Google Scholar
Andrés-Guerrero V, Zong M, Ramsay E, Rojas B, Sarkhel S, Gallego B, et al. Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology. J Control Release. 2015;211:105–17.
Article
PubMed
CAS
Google Scholar
Aramwit P, Ekasit S, Yamdech R. The development of non-toxic ionic-crosslinked chitosan-based microspheres as carriers for the controlled release of silk sericin. Biomed Microdevices. 2015;17(5):1–9.
Article
CAS
Google Scholar
Mayol L, Biondi M, Russo L, Malle BM, Schwach-Abdellaoui K, Borzacchiello A. Amphiphilic hyaluronic acid derivatives toward the design of micelles for the sustained delivery of hydrophobic drugs. Carbohydr Polym. 2014;102:110–6.
Article
CAS
PubMed
Google Scholar
Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–21.
Article
CAS
PubMed
Google Scholar
Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm. 2015;95:227–38.
Article
CAS
PubMed
Google Scholar
Hernández R, Sacristán J, Asín L, Torres T, Ibarra M, Goya G, et al. Magnetic hydrogels derived from polysaccharides with improved specific power absorption: potential devices for remotely triggered drug delivery. J Phys Chem B. 2010;114(37):12002–7.
Article
PubMed
CAS
Google Scholar
Balachandra A, Chan EC, Paul JP, Ng S, Chrysostomou V, Ngo S, et al. A biocompatible reverse thermoresponsive polymer for ocular drug delivery. Drug Deliv. 2019;26(1):343–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey V, Gajbhiye KR, Soni V. Lactoferrin-appended solid lipid nanoparticles of paclitaxel for effective management of bronchogenic carcinoma. Drug Deliv. 2015;22(2):199–205.
Article
CAS
PubMed
Google Scholar
Rai A, Jain A, Jain A, Jain A, Pandey V, Chashoo G, et al. Targeted SLNs for management of HIV-1 associated dementia. Drug Dev Ind Pharm. 2015;41(8):1321–7.
Article
CAS
PubMed
Google Scholar
Tekade RK, Maheshwari R, Tekade M, Chougule MB. Solid lipid nanoparticles for targeting and delivery of drugs and genes. In: Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes: Elsevier; 2017. p. 256-86. https://doi.org/10.1016/B978-0-12-809717-5.00010-5
Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35.
Article
CAS
PubMed
Google Scholar
Amoabediny G, Haghiralsadat F, Naderinezhad S, Helder MN, Akhoundi Kharanaghi E, Mohammadnejad Arough J, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: a comprehensive review. Int J Polym Mater. 2018;67(6):383–400.
Article
CAS
Google Scholar
Mo Z, Ban J, Zhang Y, Du Y, Wen Y, Huang X, et al. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine. 2018;13(11):1239–53.
Article
CAS
PubMed
Google Scholar
Bhattacharjee A, Das PJ, Adhikari P, Marbaniang D, Pal P, Ray S, et al. Novel drug delivery systems for ocular therapy: with special reference to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–26.
Article
PubMed
Google Scholar
Shi S, Peng F, Zheng Q, Zeng L, Chen H, Li X, et al. Micelle-solubilized axitinib for ocular administration in anti-neovascularization. Int J Pharm. 2019;560:19–26.
Article
CAS
PubMed
Google Scholar
Yadav M, Schiavone N, Guzman-Aranguez A, Giansanti F, Papucci L, de Lara MJP, et al. Atorvastatin-loaded solid lipid nanoparticles as eye drops: proposed treatment option for age-related macular degeneration (AMD). Drug Deliv Transl Res. 2020;10(4):919–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B. 2020;194: 111157.
Article
CAS
Google Scholar
Baig MS, Owida H, Njoroge W, Yang Y. Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Deliv Sci Technol. 2020;55: 101496.
Article
CAS
Google Scholar
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym technol Appl. 2021;2: 100067.
CAS
Google Scholar
Pathak K. Marine bioadhesives: opportunities and challenges. Ther Deliv. 2019;10(12):749–51.
Article
CAS
PubMed
Google Scholar
Servais AB, Kienzle A, Valenzuela CD, Ysasi AB, Wagner WL, Tsuda A, et al. Structural heteropolysaccharide adhesion to the glycocalyx of visceral mesothelium. Tissue Eng Part A. 2018;24(3–4):199–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
George B, Suchithra T. Plant-derived bioadhesives for wound dressing and drug delivery system. Fitoterapia. 2019;137: 104241.
Article
CAS
PubMed
Google Scholar
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene A-L, Dinu-Pîrvu C-E. Strategies for improving ocular drug bioavailability and corneal wound healing with chitosan-based delivery systems. Polymers. 2018;10(11):1221.
Article
PubMed Central
CAS
Google Scholar
Nishikawa S, Tamai M. Ultrastructure of hyaluronic acid and collagen in the human vitreous. Curr Eye Res. 1996;15(1):37–43.
Article
CAS
PubMed
Google Scholar
Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29(6):409–20.
Article
CAS
PubMed
Google Scholar
Fulgêncio GDO, Viana FAB, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior ADS. New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther. 2012;28(4):350–8.
Article
CAS
Google Scholar
Lodhi BA, Hussain MA, Ashraf MU, Farid-Ul-Haq M, Haseeb MT, Tabassum T. Acute toxicity of a polysaccharide-based hydrogel from seeds of Ocimum basilicum. Cell Chem Technol. 2020;54(3–4):291–9.
Article
CAS
Google Scholar
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug delivery. Pharmaceutics. 2020;12(1):22.
Article
CAS
Google Scholar
Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J. Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol. 2018;116:1026–36.
Article
CAS
PubMed
Google Scholar
Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular delivery. Adv Polym Technol. 2019. https://doi.org/10.1155/2019/1316249.
Article
Google Scholar
Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, et al. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: formulation and in vivo efficacy evaluation. Nanotechnol Biol Med. 2020;26: 102181.
Article
CAS
Google Scholar
Qian Q, Niu S, Williams GR, Wu J, Zhang X, Zhu L-M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf A Physicochem Eng Asp. 2019;564:122–30.
Article
CAS
Google Scholar
Lu T-Y, Huang W-C, Chen Y, Baskaran N, Yu J, Wei Y. Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B. 2020;195: 111258.
Article
CAS
Google Scholar
Silva B, Marto J, São Braz B, Delgado E, Almeida AJ, Gonçalves L. New nanoparticles for topical ocular delivery of erythropoietin. Int J Pharm. 2020;576: 119020.
Article
CAS
PubMed
Google Scholar
Yang D, So KF, Lo AC. Lycium barbarum polysaccharide extracts preserve retinal function and attenuate inner retinal neuronal damage in a mouse model of transient retinal ischaemia. Clin Exp Ophthalmol. 2017;45(7):717–29.
Article
PubMed
Google Scholar
Chien KJ, Horng CT, Huang YS, Hsieh YH, Wang CJ, Yang JS, et al. Effects of Lycium barbarum (goji berry) on dry eye disease in rats. Mol Med Rep. 2018;17(1):809–18.
CAS
PubMed
Google Scholar
Lakshmanan Y, Wong FSY, Zuo B, So K-F, Bui BV, Chan HHL. Posttreatment intervention with lycium barbarum polysaccharides is neuroprotective in a rat model of chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2019;60(14):4606–18.
Article
PubMed
Google Scholar
Liu Y, Zhang Y. Lycium barbarum polysaccharides alleviate hydrogen peroxide-induced injury by up-regulation of miR-4295 in human trabecular meshwork cells. Exp Mol Pathol. 2019;106:109–15.
Article
CAS
PubMed
Google Scholar
Liu L, Sha X-Y, Wu Y-N, Chen M-T, Zhong J-X. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen Res. 2020;15(8):1526.
Article
PubMed
PubMed Central
Google Scholar
Buosi FS, Alaimo A, Di Santo MC, Elías F, Liñares GG, Acebedo SL, et al. Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: impact on human ARPE-19 culture cells. Int J Biol Macromol. 2020;165:804–21.
Article
CAS
PubMed
Google Scholar
Luo L-J, Nguyen DD, Lai J-Y. Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: a push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. Biomaterials. 2020;243: 119961.
Article
CAS
PubMed
Google Scholar
Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-polycaprolactone core–shell microparticles for sustained delivery of bevacizumab. Mol Pharm. 2020;17(7):2570–84.
Article
CAS
PubMed
Google Scholar
Zoratto N, Forcina L, Matassa R, Mosca L, Familiari G, Musarò A, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular delivery of therapeutics. Pharmaceutics. 2021;13(11):1781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Chi J, Jiang Z, Hu H, Yang C, Liu W, et al. A self-healing and injectable hydrogel based on water-soluble chitosan and hyaluronic acid for vitreous substitute. Carbohydr Polym. 2021;256: 117519.
Article
CAS
PubMed
Google Scholar
Kicková E, Sadeghi A, Puranen J, Tavakoli S, Sen M, Ranta V-P, et al. Pharmacokinetics of pullulan-dexamethasone conjugates in retinal drug delivery. Pharmaceutics. 2022;14(1):12.
Article
CAS
Google Scholar
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, et al. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev. 2019;148:290–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 2015;9(7):6644–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang J, Qin N, Chong Y, Diao Y, Wang Z, Xue T, et al. Nanowire arrays restore vision in blind mice. Nat Commun. 2018;9(1):1–13.
Article
CAS
Google Scholar
Liu XL, Chen S, Zhang H, Zhou J, Fan HM, Liang XJ. Magnetic nanomaterials for advanced regenerative medicine: the promise and challenges. Adv Mater. 2019;31(45):1804922.
Article
CAS
Google Scholar
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.
Article
CAS
PubMed
Google Scholar
Gao Y, Lim J, Teoh S-H, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem Soc Rev. 2015;44(17):6306–29.
Article
CAS
PubMed
Google Scholar
Sharma R, Sharma D, Hazlett LD, Singh NK. Nano-biomaterials for retinal regeneration. Nanomaterials. 2021;11(8):1880.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karamichos D. Ocular tissue engineering: current and future directions. J Funct Biomater. 2015;6(1):77–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev. 2019;39(1):302–27.
Article
PubMed
Google Scholar
Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W-N, Ravi N, et al. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro. 2016;37:61–9.
Article
PubMed
CAS
Google Scholar
Leow S, Luu CD, Hairul Nizam M, Mok P, Ruhaslizan R, Wong H, et al. Safety and efficacy of human Wharton’s Jelly-derived mesenchymal stem cells therapy for retinal degeneration. PLoS ONE. 2015;10(6): e0128973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J-W, Yu Z-Y, Cheng S-J, Chung JH, Liu X, Wu C-Y, et al. Graphene oxide–based nanomaterials: An insight into retinal prosthesis. Int J Mol Sci. 2020;21(8):2957.
Article
CAS
PubMed Central
Google Scholar
Tummala GK, Joffre T, Lopes VR, Liszka A, Buznyk O, Ferraz N, et al. Hyperelastic nanocellulose-reinforced hydrogel of high water content for ophthalmic applications. ACS Biomater Sci Eng. 2016;2(11):2072–9.
Article
CAS
PubMed
Google Scholar
Uzunalli G, Soran Z, Erkal TS, Dagdas YS, Dinc E, Hondur A, et al. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater. 2014;10(3):1156–66.
Article
CAS
PubMed
Google Scholar
Alarcon E, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, et al. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale. 2016;8(12):6484–9.
Article
CAS
PubMed
Google Scholar
Kim JI, Kim JY, Park CH. Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci Rep. 2018;8(1):1–13.
Google Scholar
Salehi S, Czugala M, Stafiej P, Fathi M, Bahners T, Gutmann JS, et al. Poly (glycerol sebacate)-poly (ε-caprolactone) blend nanofibrous scaffold as intrinsic bio-and immunocompatible system for corneal repair. Acta Biomater. 2017;50:370–80.
Article
CAS
PubMed
Google Scholar
Wu Z, Kong B, Liu R, Sun W, Mi S. Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold. Nanomaterials. 2018;8(2):124.
Article
PubMed Central
CAS
Google Scholar
Nibourg LM, Gelens E, de Jong MR, Kuijer R, van Kooten TG, Koopmans SA. Nanofiber-based hydrogels with extracellular matrix-based synthetic peptides for the prevention of capsular opacification. Exp Eye Res. 2016;143:60–7.
Article
CAS
PubMed
Google Scholar
Momenzadeh D, Baradaran-Rafii A, Keshel SH, Ebrahimi M, Biazar E. Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artif Cells Nanomed Biotechnol. 2017;45(1):120–7.
Article
CAS
PubMed
Google Scholar
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat5580.
Article
PubMed
PubMed Central
Google Scholar
Thomas BB, Zhu D, Zhang L, Thomas PB, Hu Y, Nazari H, et al. Survival and functionality of hESC-derived retinal pigment epithelium cells cultured as a monolayer on polymer substrates transplanted in RCS rats. Investig Ophthalmol Vis Sci. 2016;57(6):2877–87.
Article
CAS
Google Scholar
Kashani AH, Uang J, Mert M, Rahhal F, Chan C, Avery RL, et al. Surgical method for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy: experience from a phase 1/2a study. Ophthalmol Retina. 2020;4(3):264–73.
Article
PubMed
Google Scholar
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10(435):eaao4097.
Article
PubMed
CAS
Google Scholar
Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly (ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. Mater Sci Eng C. 2020;108: 110415.
Article
CAS
Google Scholar
Tayebi T, Baradaran-Rafii A, Hajifathali A, Rahimpour A, Zali H, Shaabani A, et al. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep. 2021;11(1):1–12.
Article
CAS
Google Scholar
Liu Y-C, Lin MTY, Ng AHC, Wong TT, Mehta JS. Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals. 2020;13(11):351.
Article
PubMed Central
CAS
Google Scholar
Zhao X, Si J, Huang D, Li K, Xin Y, Sui M. Application of star poly (ethylene glycol) derivatives in drug delivery and controlled release. J Control Release. 2020;323:565–77.
Article
CAS
PubMed
Google Scholar
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine-based solutions for ocular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(4): e1548.
Article
PubMed
Google Scholar
Liu B, Kang C, Fang F. Biometric measurement of anterior segment: a review. Sensors. 2020;20(15):4285.
Article
PubMed Central
Google Scholar
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials. 2021;11(1):173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen H-H, Chan EC, Lee JH, Bee Y-S, Lin T-W, Dusting GJ, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: New vehicles for ophthalmic drug delivery. Nanomedicine. 2015;10(13):2093–107.
Article
CAS
PubMed
Google Scholar
Besford QA, Cavalieri F, Caruso F. Glycogen as a building block for advanced biological materials. Adv Mater. 2020;32(18):1904625.
Article
CAS
Google Scholar
Nguyen DD, Lai J-Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem. 2020;11(44):6988–7008.
Article
CAS
Google Scholar
Deshpande A, Mohamed M, Daftardar SB, Patel M, Boddu SH, Nesamony J. Solid lipid nanoparticles in drug delivery: Opportunities and challenges. In: Emerging nanotechnologies for diagnostics, drug delivery and medical devices, 2017, 291–330. https://doi.org/10.1016/B978-0-323-42978-8.00012-7
Dhanasekaran S, Chopra S. Getting a handle on smart drug delivery systems—a comprehensive view of therapeutic targeting strategies. Smart Drug Delivery System. 2016;1:31–62.
Google Scholar
Mohanta BC, Dinda SC, Palei NN, Deb J. Solid lipid based nano-particulate formulations in drug targeting. In: Role of novel drug delivery vehicles in nanobiomedicine, 2019, 95. https://doi.org/10.5772/intechopen.88268
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: a review. Polym Degrad Stab. 2018;156:269–78.
Article
CAS
Google Scholar
Kritchenkov AS, Andranovitš S, Skorik YA. Chitosan and its derivatives: vectors in gene therapy. Russ Chem Rev. 2017;86(3):231.
Article
CAS
Google Scholar
Berezin A, Lomkova E, Skorik YA. Chitosan conjugates with biologically active compounds: design strategies, properties, and targeted drug delivery. Russ Chem Bull. 2012;61(4):781–95.
Article
CAS
Google Scholar
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol. 2019;121:556–71.
Article
CAS
PubMed
Google Scholar
Fernando IS, Kim D, Nah J-W, Jeon Y-J. Advances in functionalizing fucoidans and alginates (bio) polymers by structural modifications: a review. Chem Eng J. 2019;355:33–48.
Article
CAS
Google Scholar
Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications. Polym Rev. 2019;59(3):510–60.
Article
CAS
Google Scholar
Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, et al. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm. 2015;495(1):249–64.
Article
CAS
PubMed
Google Scholar
Zambito Y, Di Colo G. Thiolated quaternary ammonium–chitosan conjugates for enhanced precorneal retention, transcorneal permeation and intraocular absorption of dexamethasone. Eur J Pharm Biopharm. 2010;75(2):194–9.
Article
CAS
PubMed
Google Scholar
Rassu G, Gavini E, Jonassen H, Zambito Y, Fogli S, Breschi MC, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009;98(12):4852–65.
Article
CAS
PubMed
Google Scholar
Hume LR, Lee HK, Benedetti L, Sanzgiri YD, Topp EM, Stella VJ. Ocular sustained delivery of prednisolone using hyaluronic acid benzyl ester films. Int J Pharm. 1994;111(3):295–8.
Article
CAS
Google Scholar
Bongiovì F, Di Prima G, Palumbo FS, Licciardi M, Pitarresi G, Giammona G. Hyaluronic acid-based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids. Macromol Biosci. 2017;17(12):1700261.
Article
CAS
Google Scholar
De Campos AM, Diebold Y, Carvalho EL, Sánchez A, José AM. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21(5):803–10.
Article
PubMed
Google Scholar
De Salamanca AE, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci. 2006;47(4):1416–25.
Article
Google Scholar
Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomed Nanotechnol Biol Med. 2008;4(4):340.
Article
CAS
Google Scholar
Lai J-Y, Ma DHK, Cheng H-Y, Sun C-C, Huang S-J, Li Y-T, et al. Ocular biocompatibility of carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. J Biomater Sci Polym Ed. 2010;21(3):359–76.
Article
CAS
PubMed
Google Scholar
Zorzi GK, Párraga JE, Seijo B, Sánchez A. Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy. Macromol Biosci. 2011;11(7):905–13.
Article
CAS
PubMed
Google Scholar
Lai J-Y. Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials in the anterior chamber of the eye. Int J Mol Sci. 2012;13(9):10970–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogunjimi AT, Melo SM, Vargas-Rechia CG, Emery FS, Lopez RF. Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym. 2017;157:1065–75.
Article
CAS
PubMed
Google Scholar
Etienne O, Schneider A, Taddei C, Richert L, Schaaf P, Voegel J-C, et al. Degradability of polysaccharides multilayer films in the oral environment: an in vitro and in vivo study. Biomacromol. 2005;6(2):726–33.
Article
CAS
Google Scholar
Nguyen NTP, Nguyen LVH, Tran NMP, Nguyen DT, Nguyen TNT, Tran HA, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater Sci Eng C. 2019;103:109670.
Article
CAS
Google Scholar
Sultana S, Alzahrani N, Alzahrani R, Alshamrani W, Aloufi W, Ali A, et al. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J Drug Target. 2020;28(5):468–86.
Article
CAS
PubMed
Google Scholar
Yu H, Wu W, Lin X, Feng Y. Polysaccharide-based nanomaterials for ocular drug delivery: a perspective. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.601246.
Article
PubMed
PubMed Central
Google Scholar
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology. 2016;10(7):836–60.
Article
CAS
PubMed
Google Scholar
Almeida H, Lobão P, Frigerio C, Fonseca J, Silva R, Sousa Lobo JM, et al. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharm Dev Technol. 2017;22(3):336–49.
Article
CAS
PubMed
Google Scholar
Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol. 2017;101(12):1731–8.
Article
PubMed
Google Scholar
Tan G, Yu S, Pan H, Li J, Liu D, Yuan K, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94:355–63.
Article
CAS
PubMed
Google Scholar
Castro BFM, de Oliveira FG, Domingos LC, Cotta OAL, Silva-Cunha A, Fialho SL. Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol. 2020;60: 101912.
Article
CAS
Google Scholar
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci. 2021;22(22):12368.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samimi M, Mahboobian M, Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol. 2021;40(12):2039–47.
Article
CAS
PubMed
Google Scholar
Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur J Pharm Sci. 2021;159: 105735.
Article
PubMed
CAS
Google Scholar
Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28.
Article
PubMed Central
CAS
Google Scholar
Eroglu YI. A comparative review of Haute Autorité de Santé and National Institute for Health and Care Excellence health technology assessments of Ikervis® to treat severe keratitis in adult patients with dry eye disease which has not improved despite treatment with tear substitutes. J Mark Access Health Policy. 2017;5(1):1336043.
Article
PubMed
PubMed Central
Google Scholar
Reimondez-Troitiño S, Csaba N, Alonso M, De La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95:279–93.
Article
PubMed
CAS
Google Scholar
Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine. 2016;11:1.
CAS
PubMed
Google Scholar
Pooja D, Kadari A, Kulhari H, Sistla R. Lipid-based nanomedicines: Current clinical status and future perspectives. In: Lipid nanocarriers for drug targeting. Lipid-based nanomedicines. Elsevier; 2018. p. 509–28. https://doi.org/10.1016/B978-0-12-813687-4.00013-X.
Palla S, Biswas J, Nagesha CK. Efficacy of Ozurdex implant in treatment of noninfectious intermediate uveitis. Indian J Ophthalmol. 2015;63(10):767.
Article
PubMed
PubMed Central
Google Scholar
Fusi-Rubiano W, Blow RR, Lane M, Morjaria R, Denniston AK. Iluvien™(fluocinolone acetonide 0.19 mg intravitreal implant) in the treatment of diabetic macular edema: a review. Ophthalmol Ther. 2018;7(2):293–305.
Article
PubMed
PubMed Central
Google Scholar
Kim HM, Woo SJ. Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics. 2021;13(1):108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DJ. Intraocular implants for the treatment of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grumezescu AM. Design of nanostructures for versatile therapeutic applications. Burlington: William Andrew; 2018.
Google Scholar
Ghanchi F, Bourne R, Downes SM, Gale R, Rennie C, Tapply I, et al. An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment: AMD, DMO, RVO, uveitis and glaucoma. Eye. 2022;36(6):1154–67.
Article
PubMed
PubMed Central
Google Scholar
Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4(2):1000164.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang M, Peterson WM, Yu Y, Kays J, Cardona D, Culp D, et al. GB-102 for wet AMD: a novel injectable formulation that safely delivers active levels of sunitinib to the retina and RPE/choroid for over four months. Investig Ophthalmol Vis Sci. 2016;57(12):5037.
Google Scholar
Gupta PK, Venkateswaran N. The role of KPI-121 0.25% in the treatment of dry eye disease: penetrating the mucus barrier to treat periodic flares. Ther Adv Ophthalmol. 2021. https://doi.org/10.1177/25158414211012797.
Article
PubMed
PubMed Central
Google Scholar
Wong CW, Metselaar JM, Storm G, Wong TT. A review of the clinical applications of drug delivery systems for the treatment of ocular anterior segment inflammation. Br J Ophthalmol. 2021;105(12):1617–22.
Article
PubMed
Google Scholar
Bourlais C, Acar L, Zia HH, Sado PA, Needham T, Leverge R. Prog Retin Eye Res. 1998;17:33–58.
Article
CAS
PubMed
Google Scholar
Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Investig Ophthalmol Vis Sci. 2004;45(7):2342–7.
Article
Google Scholar
Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–216.
Article
CAS
PubMed
Google Scholar
Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;161(2):628–34.
Article
CAS
PubMed
Google Scholar
Lee SJ, He W, Robinson SB, Robinson MR, Csaky KG, Kim H. Evaluation of clearance mechanisms with transscleral drug delivery. Invest Ophthalmol Vis Sci. 2010;51(10):5205–12.
Article
PubMed
Google Scholar
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int J Nanomedicine. 2021;16:6497.
Article
PubMed
PubMed Central
Google Scholar
Nagarwal RC, Kant S, Singh P, Maiti P, Pandit J. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.
Article
CAS
PubMed
Google Scholar
Sharif NA. Therapeutic drugs and devices for tackling ocular hypertension and glaucoma, and need for neuroprotection and cytoprotective therapies. Front pharmacol. 2021. https://doi.org/10.3389/fphar.2021.729249.
Article
PubMed
PubMed Central
Google Scholar
Araújo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed Nanotechnol Biol Med. 2009;5(4):394–401.
Article
CAS
Google Scholar
Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol. 2005;57(12):1555–63.
Article
CAS
PubMed
Google Scholar
Cheruvu NP, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49(1):333–41.
Article
PubMed
Google Scholar
Vadlapudi A, CholKAr K, Dasari S, Mitra A. Ocular drug delivery. Drug Deliv. 2015;1:219–63.
Google Scholar
del Amo Páez EM. Ocular and systemic pharmacokinetic models for drug discovery and development. Academic Dissertation 2015. Hansaprint Printing House, Helsinki. ISBN 978-951-51-1425-9 (print)978-951-51-1426-6 (online).
Schoenwald RD. Ocular pharmacokinetics: Lippincott-Raven: Philadelphia. USA: PA; 1997.
Google Scholar
Mishima S, Gasset A, Klyce S, Baum J. Determination of tear volume and tear flow. Invest Ophthalmol Vis Sci. 1966;5(3):264–76.
CAS
Google Scholar
Marsh DA. Selection of drug delivery approaches for the back of the eye: opportunities and unmet needs. In: Kompella UB, Edelhauser HF, editors. Drug product development for the back of the eye. Boston: Springer; 2011. p. 1–20.
Google Scholar
Wilson CG, Tan LE, Mains J. Principles of retinal drug delivery from within the vitreous. In: Kompella UB, Edelhauser HF, editors. Drug product development for the back of the eye. Boston: Springer; 2011. p. 125–58.
Chapter
Google Scholar
Radhakrishnan K, Sonali N, Moreno M, Nirmal J, Fernandez AA, Venkatraman S, et al. Protein delivery to the back of the eye: barriers, carriers and stability of anti-VEGF proteins. Drug Discov Today. 2017;22(2):416–23.
Article
CAS
PubMed
Google Scholar
Kaji H, Nagai N, Nishizawa M, Abe T. Drug delivery devices for retinal diseases. Adv Drug Deliv Rev. 2018;128:148–57.
Article
CAS
PubMed
Google Scholar
Agrahari V, Agrahari V, Mandal A, Pal D, Mitra AK. How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches. Expert Opin Drug Deliv. 2017;14(10):1145–62.
Article
CAS
PubMed
Google Scholar
Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.
Article
CAS
PubMed
Google Scholar
Masadeh R, Obaidat R, Alsmadi MT, Altaani B, Khanfar M, Alshyab R, et al. Technical Insight into Biodegradable Polymers Used in Implants. Jordan J Pharm Sci. 2018;11(3):133–60.
Google Scholar
Tamboli V, Mishra GP, Mitra AK. Biodegradable polymers for ocular drug delivery. Adv Ocul Drug Deliv. 2012;2012:65–86.
Google Scholar
Kleiner LW, Wright JC, Wang Y. Evolution of implantable and insertable drug delivery systems. J Control Release. 2014;181:1–10.
Article
CAS
PubMed
Google Scholar
García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. Pharmaceutics. 2021;13(5):701.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kompella UB, Edelhauser HF. Drug product development for the back of the eye. Cham: Springer; 2011.
Book
Google Scholar
Kanski JJ, Bowling B. Clinical ophthalmology: a systematic approach. Elsevier Saunders; 2011. https://doi.org/10.1016/B978-0-7020-4093-1.00019-7
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, et al. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.
Article
PubMed Central
CAS
Google Scholar
Smith S, Lorenz D, Peace J, McLeod K, Crockett R, Vogel R. Difluprednate ophthalmic emulsion 0.05%(Durezol®) administered two times daily for managing ocular inflammation and pain following cataract surgery. Clin Ophthalmol. 2010;4:983–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park CH, Kim MK, Kim EC, Kim JY, Kim T-I, Kim HK, et al. Efficacy of topical cyclosporine nanoemulsion 0.05% compared with topical cyclosporine emulsion 0.05% and diquafosol 3% in dry eye. Korean J Ophthalmol. 2019;33(4):343–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leonardi A, Van Setten G, Amrane M, Ismail D, Garrigue J-S, Figueiredo FC, et al. Efficacy and safety of 0.1% cyclosporine A cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. J Ophthalmol. 2016;26(4):287–96.
Google Scholar
Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm Res. 2019;36(2):1–21.
Article
CAS
Google Scholar
Buggage RR, Amrane M, Ismail D, Deniaud M, Lemp MA, Baudouin C. The effect of cyclokat®(preservative-free cyclosporine 0.1% cationic emulsion) on dry eye disease signs and symptoms in sjogren and non-sjogren patients with moderate to severe DED in a phase III randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53(14):576.
Google Scholar
Бeздeткo П, Ильинa E. Эффeктивнocть лeчeния пaтoлoгии пepeднeй пoвepxнocти глaзнoгo яблoкa пpeпapaтaми Эдeнopм 5% и Лaкpиceк oфтa плюc. Oфтaльмoлoгия Bocтoчнaя Eвpoпa. 2017;7(3):403–9.
Google Scholar
Garrigue J-S, Amrane M, Faure M-O, Holopainen JM, Tong L. Relevance of lipid-based products in the management of dry eye disease. J Ocul Pharmacol Ther. 2017;33(9):647–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bressler NM, Bressler SB. Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Investig Ophthalmol Vis Sci. 2000;41(3):624–8.
CAS
Google Scholar
Tobin KA. Macugen treatment for wet age-related macular degeneration. Insight. 2006;31(1):11–4.
PubMed
Google Scholar
Opitz DL, Harthan JS. Review of azithromycin ophthalmic 1% solution (AzaSite®) for the treatment of ocular infections. Ophthalmol Eye Dis. 2012. https://doi.org/10.4137/OED.S7791.
Article
PubMed
PubMed Central
Google Scholar
Denis P, Baudouin C, Bron A, Nordmann J-P, Renard JP, Rouland JF, et al. First-line latanoprost therapy in ocular hypertension or open-angle glaucoma patients: a 3-month efficacy analysis stratified by initial intraocular pressure. BMC Ophthalmol. 2010;10(1):1–9.
Article
CAS
Google Scholar
Benelli U. Systane® lubricant eye drops in the management of ocular dryness. Clin Ophthalmol. 2011;5:783.
Article
PubMed
PubMed Central
Google Scholar
Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, et al. Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. Invest Ophthalmol Vis Sci. 2015;56(7):5706.
Google Scholar