Verma SK, Panda PK, Kumari P, Patel P, Arunima A, Jha E, et al. Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Green Chem. 2021;23:3439–58.
Article
CAS
Google Scholar
Lu C, Han L, Wang J, Wan J, Song G, Rao J. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev. 2021;50:8102–46.
Article
CAS
PubMed
Google Scholar
Chen Y-T, Kolhatkar AG, Zenasni O, Xu S, Lee TR. Biosensing using magnetic particle detection techniques. Sensors. 2017;17(10):2300.
Article
PubMed Central
CAS
Google Scholar
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–89.
Article
CAS
PubMed
Google Scholar
Issadore D, Park YI, Shao H, Min C, Lee K, Liong M, et al. Magnetic sensing technology for molecular analyses. Lab Chip. 2014;14:2385–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neamtu M, Nadejde C, Hodoroaba V-D, Schneider RJ, Verestiuc L, Panne U. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci Rep. 2018;8:6278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-coated magnetite nanoparticles for protein immobilization. Materials (Basel). 2021;14(2):248.
Article
CAS
Google Scholar
Heydari Sheikh Hossein H, Jabbari I, Zarepour A, Zarrabi A, Ashrafizadeh M, Taherian A, et al. Functionalization of magnetic nanoparticles by folate as potential MRI contrast agent for breast cancer diagnostics. Molecules. 2020;25(18):4053.
Article
PubMed Central
CAS
Google Scholar
Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics. 2020;10(14):6278–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Rösch EL, Viereck T, Schilling M, Ludwig F. Toward rapid and sensitive detection of SARS-CoV-2 with functionalized magnetic nanoparticles. ACS Sens. 2021;6(3):976–84.
Article
CAS
PubMed
Google Scholar
Abarca-Cabrera L, Fraga-García P, Berensmeier S. Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater Res. 2021;25:12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, et al. Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials. 2017;7(9):243.
Article
PubMed Central
CAS
Google Scholar
Majidi S, ZeinaliSehrig F, Farkhani SM, SoleymaniGoloujeh M, Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif Cells Nanomed Biotechnol. 2016;44:722–34.
Article
CAS
PubMed
Google Scholar
Khizar S, Ahmad NM, Zine N, Jaffrezic-Renault N, Errachid-el-salhi A, Elaissari A. Magnetic nanoparticles: from synthesis to theranostic applications. ACS Appl Nano Mater. 2021;4(5):4284–306.
Article
CAS
Google Scholar
Patel P, Nandi A, Jha E, Sinha A, Mohanty S, Panda PK, et al. Magnetic nanoparticles: fabrication, characterization, properties, and application for environment sustainability. In: Magnetic nanoparticle-based hybrid materials. London: Elsevier; 2021. p. 33–64.
Chapter
Google Scholar
Lee H, Shin T-H, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115(19):10690–724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8):1222–44.
Article
CAS
Google Scholar
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.
Article
CAS
PubMed
Google Scholar
Maleki A, Niksefat M, Rahimi J, Hajizadeh Z. Design and preparation of Fe3O4@PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem. 2019;13(1):19.
Article
PubMed
PubMed Central
Google Scholar
Shigeoka D, Yamazaki T, Ishikawa T, Miike K, Fujiwara K, Ide T, et al. Functionalization and magnetic relaxation of ferrite nanoparticles for theranostics. IEEE Trans Magn. 2018;54(11):6100707.
Article
Google Scholar
Yalcin S, Gündüz U. Iron oxide-based polymeric magnetic nanoparticles for drug and gene delivery: in vitro and in vivo applications in cancer. In: Handbook of polymer and ceramic nanotechnology. Cham: Springer International Publishing; 2019. p. 1–22.
Google Scholar
Sandler SE, Fellows B, Thompson MO. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal Chem. 2019;91(22):14159–69.
Article
CAS
PubMed
Google Scholar
Pellicer-Guridi R, Vogel MW, Reutens DC, Vegh V. Towards ultimate low frequency air-core magnetometer sensitivity. Sci Rep. 2017;7:2269.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaster RS, Xu L, Han S-J, Wilson RJ, Hall DA, Osterfeld SJ, et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat Nanotechnol. 2011;6:314–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat Nanotechnol. 2013;8:369–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenning GG, Rodriguez R, Zotev VS, Moslemi A, Wilson S, Hawel L, et al. Detection of magnetically enhanced cancer tumors using SQUID magnetometry: a feasibility study. Rev Sci Instrum. 2005;76: 014303.
Article
CAS
Google Scholar
Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14(11):21266–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arun T, Verma SK, Panda PK, Joseyphus RJ, Jha E, Akbari-Fakhrabadi A, et al. Facile synthesized novel hybrid graphene oxide/cobalt ferrite magnetic nanoparticles based surface coating material inhibit bacterial secretion pathway for antibacterial effect. Mater Sci Eng C. 2019;104: 109932.
Article
CAS
Google Scholar
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2018;7(5):1700845.
Article
CAS
Google Scholar
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8:2082.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, et al. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environ Pollut. 2020;267: 115482.
Article
CAS
PubMed
Google Scholar
Malhotra N, Lee J-S, Liman RAD, Ruallo JMS, Villaflores OB, Ger T-R, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159.
Article
CAS
PubMed Central
Google Scholar
van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ. Integrated lab-on-chip biosensing systems based on magnetic particle actuation—a comprehensive review. Lab Chip. 2014;14:1966–86.
Article
PubMed
Google Scholar
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–37.
Article
CAS
PubMed
Google Scholar
Arias L, Pessan J, Vieira A, Lima T, Delbem A, Monteiro D. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7(2):46.
Article
PubMed Central
CAS
Google Scholar
Yallapu MM, Foy SP, Jain TK, Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm Res. 2010;27(11):2283–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chircov C, Grumezescu AM, Holban AM. Magnetic particles for advanced molecular diagnosis. Materials (Basel). 2019;12(13):2158.
Article
CAS
Google Scholar
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, et al. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnol. 2020;18:62.
Article
Google Scholar
Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, et al. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev. 2019;48:5717–51.
Article
CAS
PubMed
Google Scholar
de Dios AS, Díaz-García ME. Multifunctional nanoparticles: analytical prospects. Anal Chim Acta. 2010;666(1–2):1–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dash S, Balasubramaniam M, Dash C, Pandhare J. Biotin-based pulldown assay to validate mRNA targets of cellular miRNAs. J Vis Exp. 2018;12(136):57786.
Google Scholar
Gessner I, Fries JWU, Brune V, Mathur S. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J Mater Chem B. 2021;9:9–22.
Article
CAS
PubMed
Google Scholar
Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett. 2019;14:188.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale EN. Publication trends in drug delivery and magnetic nanoparticles. Nanoscale Res Lett. 2019;14:164.
Article
PubMed
PubMed Central
Google Scholar
Hannon GJ. RNA interference. Nature. 2002;418:244–51.
Article
CAS
PubMed
Google Scholar
Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173–84.
Article
CAS
PubMed
Google Scholar
Hu B, Weng Y, Xia X, Liang X, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21(7): e3097.
Article
PubMed
Google Scholar
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Setten RL, Rossi JJ, Han S. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.
Article
CAS
PubMed
Google Scholar
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res. 2017;7(2):346–58.
Article
CAS
PubMed
Google Scholar
Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res. 2014;42(11):6787–810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dowaidar M, Abdelhamid HN, Hällbrink M, Zou X, Langel Ü. Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochim Biophys Acta Gen Subj. 2017;1861(9):2334–41.
Article
CAS
PubMed
Google Scholar
Boisguérin P, Deshayes S, Gait MJ, O’Donovan L, Godfrey C, Betts CA, et al. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev. 2015;87:52–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ganjeifar B, Morshed SF. Targeted Drug Delivery in brain tumors-nanochemistry applications and advances. Curr Top Med Chem. 2020;20(22):1202–23.
Google Scholar
Yin PT, Pongkulapa T, Cho H-Y, Han J, Pasquale NJ, Rabie H, et al. Overcoming chemoresistance in cancer via combined microRNA therapeutics with anticancer drugs using multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10(32):26954–63.
Article
CAS
PubMed
Google Scholar
Yin PT, Shah BP, Lee K-B. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small. 2014;10(20):4106–12.
CAS
PubMed
PubMed Central
Google Scholar
Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, et al. Selective capture and purification of microRNAs and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep. 2019;9:2069.
Article
PubMed
PubMed Central
CAS
Google Scholar
Do HD, Ménager C, Michel A, Seguin J, Korichi T, Dhotel H, et al. Development of theranostic cationic liposomes designed for image-guided delivery of nucleic acid. Pharmaceutics. 2020;12(9):854.
Article
CAS
PubMed Central
Google Scholar
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–iron oxide nanoparticles conjugates: functional magnetic nanoplatforms in biomedical applications. Top Curr Chem. 2020;378:19–47.
CAS
Google Scholar
Dalmina M, Pittella F, Sierra JA, Souza GRR, Silva AH, Pasa AA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C. 2019;99:1182–90.
Article
CAS
Google Scholar
Titze de Almeida S, Horst C, Soto-Sánchez C, Fernandez E, Titze de Almeida R. Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules. 2018;23(7):1825.
Article
PubMed Central
CAS
Google Scholar
Dowaidar M, Abdelhamid HN, Hällbrink M, Freimann K, Kurrikoff K, Zou X, et al. Magnetic nanoparticle assisted self-assembly of cell penetrating peptides-oligonucleotides complexes for gene delivery. Sci Rep. 2017;7:9159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grabowska M, Grześkowiak BF, Szutkowski K, Wawrzyniak D, Głodowicz P, Barciszewski J, et al. Nano-mediated delivery of double-stranded RNA for gene therapy of glioblastoma multiforme. PLoS ONE. 2019;14(3): e0213852.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics. 2019;11(11):615.
Article
CAS
PubMed Central
Google Scholar
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, et al. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio. 2022;15: 100291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8:467–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta S, Panda PK, Hashimoto RF, Samal SK, Mishra S, Verma SK, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep. 2022;12:4911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, et al. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother. 2022;151: 113122.
Article
CAS
PubMed
Google Scholar
Chen K-H, Pan M-J, Jargalsaikhan Z, Ishdorj T-O, Tseng F-G. Development of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer. Biosensors. 2020;10(11):163.
Article
CAS
PubMed Central
Google Scholar
Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, de la Guardia M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 2020;169: 112599.
Article
CAS
PubMed
Google Scholar
Li F, Mei L, Zhan C, Mao Q, Yao M, Wang S, et al. Liquid hybridization and solid phase detection: a highly sensitive and accurate strategy for microRNA detection in plants and animals. Int J Mol Sci. 2016;17(9):1457.
Article
PubMed Central
CAS
Google Scholar
Cacheux J, Bancaud A, Leichlé T, Cordelier P. Technological challenges and future issues for the detection of circulating microRNAs in patients with cancer. Front Chem. 2019;7:815.
Article
CAS
PubMed
PubMed Central
Google Scholar
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.
Article
CAS
PubMed Central
Google Scholar
Johnson BN, Mutharasan R. Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst. 2014;139:1576–88.
Article
CAS
PubMed
Google Scholar
Pogribny IP. MicroRNAs as biomarkers for clinical studies. Exp Biol Med. 2018;243(3):283–90.
Article
CAS
Google Scholar
Su D, Wu K, Saha R, Liu J, Wang J-P. Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: a review. J Cancer Metastasis Treat. 2020;2020(6):19.
Google Scholar
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int J Mol Sci. 2019;20(4):965.
Article
CAS
PubMed Central
Google Scholar
Iyer SR, Xu S, Stains JP, Bennett CH, Lovering RM. Superparamagnetic iron oxide nanoparticles in musculoskeletal biology. Tissue Eng Part B Rev. 2017;23(4):373–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO-Cardiovascular Diseases. World Health Organization. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1. 2021.
Neuwelt A, Sidhu N, Hu C-AA, Mlady G, Eberhardt SC, Sillerud LO. Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol. 2015;204(3):W302–13.
Article
Google Scholar
Vazquez-Prada KX, Lam J, Kamato D, Xu ZP, Little PJ, Ta HT. Targeted molecular imaging of cardiovascular diseases by iron oxide nanoparticles. Arterioscler Thromb Vasc Biol. 2021;41(2):601–13.
Article
CAS
PubMed
Google Scholar
Tang J, Lobatto ME, Read JC, Mieszawska AJ, Fayad ZA, Mulder WJM. Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep. 2012;5(1):19–25.
Article
PubMed
Google Scholar
Wenzel D. Magnetic nanoparticles: novel options for vascular repair? Nanomedicine. 2016;11(8):869–72.
Article
CAS
PubMed
Google Scholar
Bietenbeck M, Engel S, Lamping S, Hansen U, Faber C, Ravoo BJ, et al. Functionalization of clinically approved MRI contrast agents for the delivery of VEGF. Bioconj Chem. 2019;30(4):1042–7.
Article
CAS
Google Scholar
Atluri V, Jayant R, Pilakka-Kanthikeel S, Garcia G, Thangavel S, Yndart A, et al. Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. Int J Nanomed. 2016;11:4287–98.
Article
CAS
Google Scholar
Li W, Yalcin M, Bharali DJ, Lin Q, Godugu K, Fujioka K, et al. Pharmacokinetics, biodistribution, and anti-angiogenesis efficacy of diamino propane tetraiodothyroacetic acid-conjugated biodegradable polymeric nanoparticle. Sci Rep. 2019;9:9006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Richards JMJ, Shaw CA, Lang NN, Williams MC, Semple SIK, MacGillivray TJ, et al. In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging. 2012;5(4):509–17.
Article
PubMed
Google Scholar
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev. 2021;170:142–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics. 2018;8(2):533–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
George SJ, Baker AH. Gene transfer to the vasculature. Mol Biotechnol. 2002;22:153–64.
Article
CAS
PubMed
Google Scholar
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Plank C, et al. Improvement of vascular function by magnetic nanoparticle-assisted circumferential gene transfer into the native endothelium. J Control Release. 2016;241:164–73.
Article
CAS
PubMed
Google Scholar
Vosen S, Rieck S, Heidsieck A, Mykhaylyk O, Zimmermann K, Bloch W, et al. Vascular repair by circumferential cell therapy using magnetic nanoparticles and tailored magnets. ACS Nano. 2016;10(1):369–76.
Article
CAS
PubMed
Google Scholar
Flores AM, Ye J, Jarr K-U, Hosseini-Nassab N, Smith BR, Leeper NJ. Nanoparticle therapy for vascular diseases. Arterioscler Thromb Vasc Biol. 2019;39(4):635–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020;19(3):255–65.
Article
PubMed
Google Scholar
Ylä-Herttuala S, Baker AH. Cardiovascular gene therapy: past, present, and future. Mol Ther. 2017;25(5):1095–106.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circ Res. 2020;126(10):1394–414.
Article
PubMed
CAS
Google Scholar
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.
Article
Google Scholar
Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.
Article
CAS
PubMed
Google Scholar
Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci. 2015;18:1213–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322–9.
Article
CAS
PubMed
Google Scholar
Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A. Application of infrared light for in vivo neural stimulation. J Biomed Opt. 2005;10(6): 064003.
Article
PubMed
Google Scholar
Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359(6376):679–84.
Article
CAS
PubMed
Google Scholar
Soto-Sánchez C, Martínez-Navarrete G, Humphreys L, Puras G, Zarate J, Pedraz JL, et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomed Nanotechnol Biol Med. 2015;11(4):835–43.
Article
CAS
Google Scholar
Wen X, Wang K, Zhao Z, Zhang Y, Sun T, Zhang F, et al. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles. PLoS ONE. 2014;9: e106652.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahlawat J, Guillama Barroso G, Masoudi Asil S, Alvarado M, Armendariz I, Bernal J, et al. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: challenges and possibilities. ACS Omega. 2020;5(22):12583–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardridge WM. Blood–brain barrier and delivery of protein and gene therapeutics to brain. Front Aging Neurosci. 2020;11:373.
Article
PubMed
PubMed Central
CAS
Google Scholar
Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1): a020412.
Article
PubMed
PubMed Central
Google Scholar
Guiot C, Zullino S, Priano L, Cavalli R. The physics of drug-delivery across the blood–brain barrier. Ther Deliv. 2016;7(3):153–6.
Article
CAS
PubMed
Google Scholar
Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, et al. Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev. 2014;71:98–114.
Article
CAS
PubMed
Google Scholar
Appelboom G, Detappe A, LoPresti M, Kunjachan S, Mitrasinovic S, Goldman S, et al. Stereotactic modulation of blood–brain barrier permeability to enhance drug delivery. Neuro Oncol. 2016;18(12):1601–9.
Article
PubMed
PubMed Central
Google Scholar
Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today. 2015;20(10):1256–64.
Article
CAS
PubMed
Google Scholar
Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaushik A, Jayant RD, Sagar V, Nair M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin Drug Deliv. 2014;11(10):1635–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabatabaei SN, Girouard H, Carret A-S, Martel S. Toward nonsystemic delivery of therapeutics across the blood–brain barrier. Nanomedicine. 2015;10(14):2129–31.
Article
CAS
PubMed
Google Scholar
Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv. 2015;6(10):1145–55.
Article
CAS
PubMed
Google Scholar
Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of l-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021;28(1):380–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H-L, Yang H-W, Hua M-Y, Wei K-C. Enhanced therapeutic agent delivery through magnetic resonance imaging–monitored focused ultrasound blood–brain barrier disruption for brain tumor treatment: an overview of the current preclinical status. Neurosurg Focus. 2012;32(1):E4.
Article
PubMed
Google Scholar
Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell–cell junctions. Nat Commun. 2017;8:15594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin L, Juneja R, Lindsay L, Pandey T, Parker DS. Semihard iron-based permanent-magnet materials. Phys Rev Appl. 2021;15: 024012.
Article
CAS
Google Scholar
Busquets M, Espargaró A, Sabaté R, Estelrich J. Magnetic nanoparticles cross the blood–brain barrier: when physics rises to a challenge. Nanomaterials. 2015;5:2231–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Natarajan S, Harini K, Gajula GP, Sarmento B, Neves-Petersen MT, Thiagarajan V. Multifunctional magnetic iron oxide nanoparticles: diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Mater. 2019;1:2.
Article
Google Scholar
Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol. 2009;4(2):386–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vinzant N, Scholl JL, Wu C-M, Kindle T, Koodali R, Forster GL. Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci. 2017;11:608.
Article
PubMed
PubMed Central
Google Scholar
Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep. 2020;10:11292.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dash S, Balasubramaniam M, Villalta F, Dash C, Pandhare J. Impact of cocaine abuse on HIV pathogenesis. Front Microbiol. 2015;6:1111.
Article
PubMed
PubMed Central
Google Scholar
Jayant R, Atluri V, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomed. 2015;10:1077–93.
Article
CAS
Google Scholar
Rodriguez M, Kaushik A, Lapierre J, Dever SM, El-Hage N, Nair M. Electro-magnetic nano-particle bound Beclin1 siRNA crosses the blood–brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. J Neuroimmune Pharmacol. 2017;12(1):120–32.
Article
PubMed
Google Scholar
Sagar V, Atluri VSR, Pilakka-Kanthikeel S, Nair M. Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse. Mol Brain. 2016;9:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv Healthc Mater. 2020;9(9):1901058.
Article
CAS
Google Scholar
WHO-Cancer. WHO. https://www.who.int/news-room/fact-sheets/detail/cancer. 2021.
American Cancer Society (ACS). Global cancer burden. American Cancer Society (ACS). https://www.cancer.org/health-care-professionals/our-global-health-work/global-cancer-burden.html. 2021.
Mohan A, Dipallini S, Lata S, Mohanty S, Pradhan PK, Patel P, et al. Oxidative stress induced antimicrobial efficacy of chitosan and silver nanoparticles coated Gutta-percha for endodontic applications. Mater Today Chem. 2020;17: 100299.
Article
CAS
Google Scholar
Mukherjee S, Liang L, Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics. 2020;12(2):147.
Article
CAS
PubMed Central
Google Scholar
Kheirkhah P, Denyer S, Bhimani AD, Arnone GD, Esfahani DR, Aguilar T, et al. Magnetic drug targeting: a novel treatment for intramedullary spinal cord tumors. Sci Rep. 2018;8:11417.
Article
PubMed
PubMed Central
CAS
Google Scholar
Racca L, Cauda V. Remotely activated nanoparticles for anticancer therapy. Nano-Micro Lett. 2021;13:11.
Article
CAS
Google Scholar
Foglia S, Ledda M, Fioretti D, Iucci G, Papi M, Capellini G, et al. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Sci Rep. 2017;7:46513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srisa-nga K, Mankhetkorn S, Okonogi S, Khonkarn R. Delivery of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci. 2019;108(2):996–1006.
Article
CAS
PubMed
Google Scholar
Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces. 2016;144:8–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinto CA, Mohindra P, Tong S, Bao G. Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale. 2015;7(29):12728–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–35.
Article
CAS
PubMed
Google Scholar
Zhou Y, Wang R, Teng Z, Wang Z, Hu B, Kolios M, et al. Magnetic nanoparticle-promoted droplet vaporization for in vivo stimuli-responsive cancer theranostics. NPG Asia Mater. 2016;8: e313.
Article
CAS
Google Scholar
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep. 2020;10:5302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borroni E, Miola M, Ferraris S, Ricci G, ŽužekRožman K, Kostevšek N, et al. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater. 2017;59:303–16.
Article
CAS
PubMed
Google Scholar
Huh Y-M, Lee E-S, Lee J-H, Jun Y-W, Kim P-H, Yun C-O, et al. Hybrid nanoparticles for magnetic resonance imaging of target-specific viral gene delivery. Adv Mater. 2007;19:3109–12.
Article
CAS
Google Scholar
WHO-COVID-19. World Health organization. https://www.who.int/emergencies/diseases/novel-coronavirus-2019. 2021.
Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano. 2020;14(7):7783–807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14(4):5135–42.
Article
CAS
PubMed
Google Scholar
Mahari S, Roberts A, Shahdeo D, Gandhi S. eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.04.24.059204.
Article
Google Scholar
Tian B, Gao F, Fock J, Dufva M, Hansen MF. Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosens Bioelectron. 2020;165: 112356.
Article
CAS
PubMed
Google Scholar
Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2021;25(3):169–74.
Article
CAS
Google Scholar
Chacón-Torres JC, Reinoso C, Navas-León DG, Briceño S, González G. Optimized and scalable synthesis of magnetic nanoparticles for RNA extraction in response to developing countries’ needs in the detection and control of SARS-CoV-2. Sci Rep. 2020;10:19004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61(6):467–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012: 614094.
Article
CAS
Google Scholar
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533–45.
Article
CAS
PubMed
Google Scholar
Verma SK, Jha E, Panda PK, Thirumurugan A, Suar M. Biological effects of green-synthesized metal nanoparticles: a mechanistic view of antibacterial activity and cytotoxicity. In: Advanced nanostructured materials for environmental remediation. Cham: Springer; 2019. p. 145–71.
Chapter
Google Scholar
Winkler DA. Role of artificial intelligence and machine learning in nanosafety. Small. 2020;16(36):2001883.
Article
CAS
Google Scholar
Ho D, Wang P, Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019;4:365–77.
Article
CAS
PubMed
Google Scholar
Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi K, et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv Healthc Mater. 2020;9(17):1901862.
Article
CAS
Google Scholar
Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater. 2020;32(13): e1901989.
Article
PubMed
CAS
Google Scholar
Ekins S, Puhl AC, Zorn KM, Lane TR, Russo DP, Klein JJ, et al. Exploiting machine learning for end-to-end drug discovery and development. Nat Mater. 2019;18:435–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu K, Su D, Liu J, Saha R, Wang J-P. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology. 2019;30(50): 502003.
Article
CAS
PubMed
Google Scholar
Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69–78.
Article
CAS
PubMed
Google Scholar
Chen C, Wang P, Li L. Applications of bacterial magnetic nanoparticles in nanobiotechnology. J Nanosci Nanotechnol. 2016;16:2164–71.
Article
CAS
PubMed
Google Scholar
Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol Biol. 2017;1570:47–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gudovan D, Balaure P, Mihăiescu D, Fudulu A, Purcăreanu B, Radu M. Functionalized magnetic nanoparticles for biomedical applications. Curr Pharm Des. 2015;21(42):6038–54.
Article
CAS
PubMed
Google Scholar
Redolfi Riva E, Sinibaldi E, Grillone AF, Del Turco S, Mondini A, Li T, et al. Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy. Nanomaterials. 2020;10(11):2104.
Article
PubMed Central
CAS
Google Scholar
Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011;108(7):2662–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheenen TWJ, Zamecnik P. The role of magnetic resonance imaging in (future) cancer staging. Invest Radiol. 2021;56:42–9.
Article
PubMed
Google Scholar
Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, et al. Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomed. 2018;13:1851–65.
Article
CAS
Google Scholar
Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, et al. Restitution of tumor suppressor microRNA-145 using magnetic nanoformulation for pancreatic cancer therapy. J Gastrointest Surg. 2017;21:94–105.
Article
PubMed
Google Scholar
Nagesh P, Chowdhury P, Hatami E, Boya V, Kashyap V, Khan S, et al. miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel). 2018;10:289.
Article
CAS
Google Scholar
Luo X, Peng X, Hou J, Wu S, Shen J, Wang L. Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomed. 2017;12:5331–43.
Article
CAS
Google Scholar
Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, et al. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomed. 2017;12:5223–38.
Article
CAS
Google Scholar
Arami S, Rashidi M, Mahdavi M, Fathi M, Entezami A. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol. 2017;36:227–37.
Article
CAS
PubMed
Google Scholar
Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U. Loading of gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol. 2016;784:121–8.
Article
CAS
PubMed
Google Scholar
Liu M-C, Jin S, Zheng M, Wang Y, Zhao P, Tang D, et al. Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic targeting, cell cytotoxicity, and protein delivery research. J Biomater Appl. 2016;31:261–72.
Article
PubMed
CAS
Google Scholar
Song M, Kim Y-J, Kim Y-H, Roh J, Kim E-C, Lee HJ, et al. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant. 2015;24(2):183–90.
Article
PubMed
Google Scholar
Winter PM, Caruthers SD, Zhang H, Williams TA, Wickline SA, Lanza GM. Antiangiogenic synergism of integrin-targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. JACC Cardiovasc Imaging. 2008;1(5):624–34.
Article
PubMed
PubMed Central
Google Scholar
Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD, et al. Intramural delivery of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol. 2008;28:820–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedrich RP, Zaloga J, Schreiber E, Tóth IY, Tombácz E, Lyer S, et al. Tissue plasminogen activator binding to superparamagnetic iron oxide nanoparticle—covalent versus adsorptive approach. Nanoscale Res Lett. 2016;11(1):297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tadayon A, Jamshidi R, Esmaeili A. Delivery of tissue plasminogen activator and streptokinase magnetic nanoparticles to target vascular diseases. Int J Pharm. 2015;495:428–38.
Article
CAS
PubMed
Google Scholar
Ma Y-H, Wu S-Y, Wu T, Chang Y-J, Hua M-Y, Chen J-P. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials. 2009;30:3343–51.
Article
CAS
PubMed
Google Scholar
Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen P, Jiang X, Huang K, Hu P, Li X, Wei L, et al. Multimode microRNA sensing via multiple enzyme-free signal amplification and cation-exchange reaction. ACS Appl Mater Interfaces. 2019;11(40):36476–84.
Article
CAS
PubMed
Google Scholar
Li X, Zhao J, Xu R, Pan L, Liu Y-M. Mass spectrometric quantification of microRNAs in biological samples based on multistage signal amplification. Analyst. 2020;145:1783–8.
Article
CAS
PubMed
Google Scholar
Nourani S, Ghourchian H, Boutorabi SM. Magnetic nanoparticle-based immunosensor for electrochemical detection of hepatitis B surface antigen. Anal Biochem. 2013;441:1–7.
Article
CAS
PubMed
Google Scholar
Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B Chem. 2008;134(2):755–60.
Article
CAS
Google Scholar
Tian B, Han Y, Wetterskog E, Donolato M, Hansen MF, Svedlindh P, et al. MicroRNA detection through DNAzyme-mediated disintegration of magnetic nanoparticle assemblies. ACS Sens. 2018;3(9):1884–91.
Article
CAS
PubMed
Google Scholar
Zhang F, Luo L, Gong H, Chen C, Cai C. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Adv. 2018;8:32262–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci Rep. 2020;10:4619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farre C, Viezzi S, Wright A, Robin P, Lejal N, Manzano M, et al. Specific and sensitive detection of Influenza A virus using a biotin-coated nanoparticle enhanced immunomagnetic assay. Anal Bioanal Chem. 2022;414:265–76.
Article
CAS
PubMed
Google Scholar
Bi S, Chen M, Jia X, Dong Y. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer. Nanoscale. 2015;7:3745–53.
Article
CAS
PubMed
Google Scholar