GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017;16(11):877–97.
Article
Google Scholar
Saavedra Moreno JS, Millán PA, Buriticá Henao OF. Introducción, epidemiología y diagnóstico de la enfermedad de Parkinson. Acta Neurol Colomb. 2019;35(1):2–10. https://doi.org/10.22379/24224022244.
Article
Google Scholar
GBD 2016 Neurological Disorders Collaborator Group. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(11):939–53.
Article
Google Scholar
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901–5.
Article
PubMed
Google Scholar
Chen X, Gumina G, Virga KG. Recent Advances in drug repurposing for Parkinson’s disease. Curr Med Chem. 2018;26(28):5340–62.
Article
CAS
Google Scholar
Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. Drug repositioning or target repositioning: a structural perspective of drug-target-indication relationship for available repurposed drugs. Comput Struct Biotechnol J. 2020;18:1043–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rassu M, Biosa A, Galioto M, Fais M, Sini P, Greggio E, et al. Levetiracetam treatment ameliorates LRRK2 pathological mutant phenotype. J Cell Mol Med. 2019;23(12):8505–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77(3):309–17.
Article
PubMed
Google Scholar
Zhang L, Zhang L, Li L, Hölscher C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis. 2019;9(1):157–71.
Article
PubMed
CAS
Google Scholar
Schaffner A, Li X, Gomez-Llorente Y, Leandrou E, Memou A, Clemente N, et al. Vitamin B 12 modulates Parkinson’s disease LRRK2 kinase activity through allosteric regulation and confers neuroprotection. Cell Res. 2019;29(4):313–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chotibut T, Meadows S, Kasanga EA, McInnis T, Cantu MA, Bishop C, et al. Ceftriaxone reduces L-dopa–induced dyskinesia severity in 6-hydroxydopamine parkinson’s disease model. Mov Disord. 2017;32(11):1547–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baskin J, Jeon JE, Lewis SJG. Nanoparticles for drug delivery in Parkinson’s disease. J Neurol. 2021;268(5):1981–94. https://doi.org/10.1007/s00415-020-10291-x.
Article
PubMed
Google Scholar
National Institute of Neurological Disorders and Stroke. Parkinson’s Disease: Hope Through Research. Bethesda, Maryland; 2020. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Parkinsons-Disease-Hope-Through-Research. Accessed 21 Dec 2020.
Tanner CM, Kame F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect. 2011;119(6):866–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nandipati S, Litvan I. Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health. 2016;13(9):881.
Article
PubMed Central
CAS
Google Scholar
Benazzouz A, Mamad O, Abedi P, Bouali-Benazzouz R, Chetrit J. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson´s disease. Front Aging Neurosci. 2014;6(87):1–5.
Google Scholar
Martínez Fernández R, Gasca Salas C, Sánchez Ferro Á, Obeso JÁ. Actualización en la enfermedad de Parkinson. Rev Med Clin Condes. 2016;27(3):363–79.
Google Scholar
Leyva-Gómez G, Cortés H, Magaña JJ, Leyva-García N, Quintanar-Guerrero D, Florán B. Nanoparticle technology for treatment of Parkinson’s disease: the role of surface phenomena in reaching the brain. Drug Discov Today. 2015;20(7):824–37.
Article
PubMed
CAS
Google Scholar
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and molecular basis of neurodegeneration in Parkinson disease. Front Aging Neurosci. 2018;10(109):1–16.
CAS
Google Scholar
Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson’s disease: implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020;134(104700):1–18.
Google Scholar
Simon DK, Tanner CM, Brundin P. Parkinson Disease epidemiology, pathology, genetics and pathophysiology. Clin Geriatr Med. 2020;36(1):1–12.
Article
PubMed
Google Scholar
Brahmachari S, Karuppagounder SS, Ge P, Lee S, Dawson VL, Dawson TM, et al. c-Abl and Parkinson’s disease: mechanisms and therapeutic potential. J Parkinsons Dis. 2017;7(4):589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep. 2014;4(4874):1–8.
Google Scholar
Abushouk AI, Negida A, Elshenawy RA, Zein H, Hammad AM, Menshawy A, et al. C-Abl Inhibition; a novel therapeutic target for parkinson’s disease. CNS Neurol Disord Drug Targets. 2017;17(1):14–21.
Article
CAS
Google Scholar
Martinez-Martin P, Rodriguez-Blazquez C, Forjaz MJ. Quality of life and burden in caregivers for patients with Parkinson’s disease: concepts, assessment and related factors. Expert Rev Pharmacoeconomics Outcomes Res. 2012;12(2):221–30.
Article
Google Scholar
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Park Dis. 2020;6(15):1–9.
CAS
Google Scholar
Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795–808.
Article
PubMed
Google Scholar
Marsot A, Guilhaumou R, Azulay JP, Blin O. Levodopa in Parkinson’s disease: a review of population pharmacokinetics/pharmacodynamics analysis. J Pharm Pharm Sci. 2017;20:226–38.
Article
CAS
PubMed
Google Scholar
Schapira AHV, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017;74(2):216–24.
Article
PubMed
Google Scholar
Latt MD, Lewis S, Zekry O, Fung VSC. Factors to consider in the selection of dopamine agonists for older persons with Parkinson’s disease. Drugs Aging. 2019;36(3):189–202. https://doi.org/10.1007/s40266-018-0629-0.
Article
CAS
PubMed
Google Scholar
Torti M, Vacca L, Stocchi F. Istradefylline for the treatment of Parkinson’s disease: is it a promising strategy? Expert Opin Pharmacother. 2018;19(16):1821–8. https://doi.org/10.1080/14656566.2018.1524876.
Article
CAS
PubMed
Google Scholar
Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet. 2014;383(9916):533–40.
Article
CAS
PubMed
Google Scholar
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and treatment response in Parkinson’s disease: an update on pharmacogenetic studies. NeuroMolecular Med. 2018;20(1):1–17. https://doi.org/10.1007/s12017-017-8473-7.
Article
CAS
PubMed
Google Scholar
Alonso-Navarro H, Jimenez-Jimenez F, Garcia-Martin E, Agundez J. Genomic and pharmacogenomic biomarkers of Parkinson’s disease. Curr Drug Metab. 2014;15(2):129–81.
Article
CAS
PubMed
Google Scholar
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Advances in understanding genomic markers and pharmacogenetics of Parkinsons disease. Expert Opin Drug Metab Toxicol. 2016;12(4):433–48. https://doi.org/10.1517/17425255.2016.1158250.
Article
CAS
PubMed
Google Scholar
Schumacher-Schuh AF, Rieder CRM, Hutz MH. Parkinson’s disease pharmacogenomics: new findings and perspectives. Pharmacogenomics. 2014;15(9):1253–71.
Article
CAS
PubMed
Google Scholar
Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351(24):2498–508.
Article
CAS
PubMed
Google Scholar
Kalinderi K, Fidani L, Katsarou Z, Bostantjopoulou S. Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract. 2011;65(12):1289–94. https://doi.org/10.1111/j.1742-1241.2011.02793.x.
Article
CAS
PubMed
Google Scholar
Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58.
Article
CAS
PubMed
Google Scholar
Nonnekes J, Timmer MHM, de Vries NM, Rascol O, Helmich RC, Bloem BR. Unmasking levodopa resistance in Parkinson’s disease. Mov Disord. 2016;31(11):1602–9. https://doi.org/10.1002/mds.26712.
Article
CAS
PubMed
Google Scholar
Pirtošek Z, Bajenaru O, Kovács N, Milanov I, Relja M, Skorvanek M. Update on the management of Parkinson’s disease for general neurologists. Parkinsons Dis. 2020;2020:1–13.
Article
CAS
Google Scholar
Pistacchi M, Gioulis M, Sanson F, Marsala S. Wearing off: A complex phenomenon often poorly recognized in Parkinson’s disease. A study with the WOQ-19 questionnaire. Neurol India. 2017;65(6):1271–9.
Article
PubMed
Google Scholar
Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology. 2009;72(21 SUPPL. 4):1–136.
Article
Google Scholar
Antonini A, Chaudhuri KR, Boroojerdi B, Asgharnejad M, Bauer L, Grieger F, et al. Impulse control disorder related behaviours during long-term rotigotine treatment: a post hoc analysis. Eur J Neurol. 2016;23(10):1556–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gatto EM, Aldinio V. Impulse control disorders in Parkinson’s Disease. A brief and comprehensive review. Front Neurol. 2019;10(351):1–19.
Google Scholar
Casu MA, Mocci I, Isola R, Pisanu A, Boi L, Mulas G, et al. Neuroprotection by the immunomodulatory drug pomalidomide in the Drosophila LRRK2WD40 genetic model of Parkinson’s disease. Front Aging Neurosci. 2020;12(31):1–13.
Google Scholar
Parsons CG. CNS repurposing - potential new uses for old drugs: examples of screens for Alzheimer’s disease, Parkinson’s disease and spasticity. Neuropharmacology. 2019;147:4–10.
Article
CAS
PubMed
Google Scholar
Athauda D, Foltynie T. Drug repurposing in Parkinson’s disease. CNS Drugs. 2018;32(8):747–61. https://doi.org/10.1007/s40263-018-0548-y.
Article
CAS
PubMed
Google Scholar
Von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res. 2011;39(SUPPL. 1):D1060–6.
Article
CAS
Google Scholar
Naylor S, Schonfeld JM. Therapeutic drug repurposing, repositioning and rescue part i: overview. Drug Discovery World (DDW). 2014;57:49–62.
Google Scholar
Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. 2020;15(4):397–401. https://doi.org/10.1080/17460441.2020.1704729.
Article
PubMed
Google Scholar
Witkowski TX. Intellectual property and other legal aspects of drug repurposing. Drug Discov Today Ther Strateg. 2011;8(3–4):139–43.
Article
Google Scholar
Hernandez JJ, Pryszlak M, Smith L, Yanchus C, Kurji N, Shahani VM, et al. Giving drugs a second chance: overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol. 2017;7(273):1–8.
Google Scholar
Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform. 2011;12(4):303–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uenaka T, Satake W, Cha PC, Hayakawa H, Baba K, Jiang S, et al. In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson’s disease. Hum Mol Genet. 2018;27(22):3974–85.
CAS
PubMed
PubMed Central
Google Scholar
Styczyńska-Soczka K, Zechini L, Zografos L. Validating the predicted effect of astemizole and ketoconazole using a Drosophila model of Parkinson’s disease. Assay Drug Dev Technol. 2017;15(3):106–12.
Article
PubMed
CAS
Google Scholar
Siddiqi FH, Menzies FM, Lopez A, Stamatakou E, Karabiyik C, Ureshino R, et al. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat Commun. 2019;10(1):1817.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poirier AA, Côté M, Bourque M, Morissette M, Di Paolo T, Soulet D. Neuroprotective and immunomodulatory effects of raloxifene in the myenteric plexus of a mouse model of Parkinson’s disease. Neurobiol Aging. 2016;48:61–71.
Article
CAS
PubMed
Google Scholar
Ayoub BM, Mowaka S, Safar MM, Ashoush N, Arafa MG, Michel HE, et al. Repositioning of omarigliptin as a once-weekly intranasal anti-parkinsonian agent. Sci Rep. 2018;8(1):8959.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fletcher EJR, Jamieson AD, Williams G, Doherty P, Duty S. Targeted repositioning identifies drugs that increase fibroblast growth factor 20 production and protect against 6-hydroxydopamine-induced nigral cell loss in rats. Sci Rep. 2019;9(1):8336.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, et al. Angiotensin type 1 receptor antagonists protect against alpha-synuclein-induced neuroinflammation and dopaminergic neuron death. Neurotherapeutics. 2018;15(4):1063–81. https://doi.org/10.1007/s13311-018-0646-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amireddy N, Puttapaka SN, Vinnakota RL, Ravuri HG, Thonda S, Kalivendi SV. The unintended mitochondrial uncoupling effects of the FDA-approved anti-helminth drug nitazoxanide mitigates experimental parkinsonism in mice. J Biol Chem. 2017;292(38):15731–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, et al. Metformin lowers α-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson’s disease. Neuropharmacology. 2017;125:396–407.
Article
CAS
PubMed
Google Scholar
Ozbey G, Nemutlu-Samur D, Parlak H, Yildirim S, Aslan M, Tanriover G, et al. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation. Pharmacol Rep. 2020;72(5):1397–406.
Article
CAS
PubMed
Google Scholar
Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, et al. Efficacy of nilotinib in patients with moderately advanced parkinson disease: a randomized clinical trial. JAMA Neurol. 2021;78(3):312–20.
Article
PubMed
Google Scholar
Son HJ, Han SH, Lee JA, Shin EJ, Hwang O. Potential repositioning of exemestane as a neuroprotective agent for Parkinson’s disease. Free Radic Res. 2017;51(6):633–45. https://doi.org/10.1080/10715762.2017.1353688.
Article
CAS
PubMed
Google Scholar
Mittal S, Bjørnevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science (80). 2017;357:891–8.
Article
CAS
Google Scholar
Rinaldi F, Seguella L, Gigli S, Hanieh PN, Del Favero E, Cantù L, et al. inPentasomes: an innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J Control Release. 2019;294:17–26.
Article
CAS
PubMed
Google Scholar
Bariotto dos Santos K, Padovan Neto FE, Bortolanza M, dos Santos Pereria M, Raisman-Vozari R, Tumas V, et al. Repurposing an established drug: an emerging role for methylene blue in L-DOPA-induced dyskinesia. Eur J Neurosci. 2019;49(6):869–82.
Article
PubMed
Google Scholar
Potts LF, Park ES, Woo JM, Dyavar Shetty BL, Singh A, Braithwaite SP, et al. Dual κ-agonist/μ-antagonist opioid receptor modulation reduces levodopa-induced dyskinesia and corrects dysregulated striatal changes in the nonhuman primate model of Parkinson disease. Ann Neurol. 2015;77(6):930–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartlett MJ, Flores AJ, Ye T, Smidt SI, Dollish HK, Stancati JA, et al. Preclinical evidence in support of repurposing sub-anesthetic ketamine as a treatment for L-DOPA-induced dyskinesia. Exp Neurol. 2020;333: 113413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, et al. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxidants Redox Signal. 2016;25(2):61–77.
Article
CAS
Google Scholar
Mahapatra A, Sarkar S, Biswas SC, Chattopadhyay K. An aminoglycoside antibiotic inhibits both lipid-induced and solution-phase fibrillation of α-synuclein: In vitro. Chem Commun. 2019;55(74):11052–5.
Article
CAS
Google Scholar
González Lizárraga F, Ploper D, Ávila CL, Socías SB, dos Santos-Pereria M, Machín B, et al. CMT-3 targets different α-synuclein aggregates mitigating their toxic and inflammogenic effects. Sci Rep. 2020;10(1):1–17. https://doi.org/10.1038/s41598-020-76927-0.
Article
CAS
Google Scholar
González-Lizárraga F, Socías SB, Ávila CL, Torres-Bugeau CM, Barbosa LRS, Binolfi A, et al. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep. 2017;7(41755):1–13.
Google Scholar
Marques CSF, Machado Júnior JB, de Andrade M, Andrade LN, Dos Santos ALS, Cruz E, et al. Use of pharmaceutical nanotechnology for the treatment of leishmaniasis. J Braz Soc Trop Med. 2019;52:1–5.
Google Scholar
Urrejola MC, Soto LV, Zumarán CC, Peñaloza JP, Álvarez B, Fuentevilla I, et al. Polymeric nanoparticle systems: structure, elaboration methods, characteristics, properties, biofunctionalization and self-assembly layer by layer technologies. Int J Morphol. 2018;36(4):1463–71.
Article
Google Scholar
Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. Int J Pharm. 2019;559:360–72.
Article
CAS
PubMed
Google Scholar
Gupta M, Lee HJ, Barden CJ, Weaver DF. The blood-brain barrier (BBB) score. J Med Chem. 2019;62(21):9824–36.
Article
CAS
PubMed
Google Scholar
Gallardo-Toledo E, Tapia-Arellano A, Celis F, Sinai T, Campos M, Kogan MJ, et al. Intranasal administration of gold nanoparticles designed to target the central nervous system: fabrication and comparison between nanospheres and nanoprisms. Int J Pharm. 2020;590: 119957. https://doi.org/10.1016/j.ijpharm.2020.119957.
Article
CAS
PubMed
Google Scholar
Ulbrich K, Knobloch T, Kreuter J. Targeting the insulin receptor: nanoparticles for drug delivery across the blood–brain barrier (BBB). J Drug Target. 2011;19(2):125–32. https://doi.org/10.3109/10611861003734001.
Article
CAS
PubMed
Google Scholar
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
Article
CAS
PubMed
Google Scholar
Alavian F, Shams N. Oral and intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: considering its advantages and disadvantages. Curr Clin Pharmacol. 2020;15(1):20.
PubMed
PubMed Central
Google Scholar
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29. https://doi.org/10.1186/s40824-019-0166-x.
Article
CAS
Google Scholar
Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.
Article
CAS
PubMed
Google Scholar
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv. 2018;25(1):1694–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaiser M, Pereira S, Pohl L, Ketelhut S, Kemper B, Gorzelanny C, et al. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Sci Rep. 2015;5(1):1–14.
Article
CAS
Google Scholar
Lien CF, Molnár É, Toman P, Tsibouklis J, Pilkington GJ, Górecki DC, et al. In vitro assessment of alkylglyceryl-functionalized chitosan nanoparticles as permeating vectors for the Blood-Brain Barrier. Biomacromolecules. 2012;13(4):1067–73. https://doi.org/10.1021/bm201790s.
Article
CAS
PubMed
Google Scholar
Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59(8):748.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joanna R, Volker O, Inge SZ, Dick H. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.
Google Scholar
Mendoza-Muñoz N, Urbán-Morlán Z, Leyva-Gómez G, De La Luz Z-Z, Piñón-Segundo E, Quintanar-Guerrero D. Solid lipid nanoparticles: an approach to improve oral drug delivery. J Pharm Pharm Sci. 2021;24:509–32.
Article
PubMed
Google Scholar
Yuan H, Huang LF, Du YZ, Ying XY, You J, Hu FQ, et al. Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system. Colloids Surfaces B Biointerfaces. 2008;61(2):132–7.
Article
CAS
PubMed
Google Scholar
Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838–45.
Article
CAS
PubMed
Google Scholar
Yu M, Yang Y, Zhu C, Guo S, Gan Y. Advances in the transepithelial transport of nanoparticles. Drug Discov Today. 2016;21(7):1155–61.
Article
CAS
PubMed
Google Scholar
Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363–73. https://doi.org/10.1021/mp500439c.
Article
CAS
PubMed
Google Scholar
Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm. 2014;87(1):19–29.
Article
CAS
PubMed
Google Scholar
Lombardo SM, Schneider M, Türeli AE, Türeli NG. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J Nanotechnol. 2020;11(1):866–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm. 2006;310(1–2):213–9.
Article
CAS
PubMed
Google Scholar
Hughes JM, Budd PM, Tiede K, Lewis J. Polymerized high internal phase emulsion monoliths for the chromatographic separation of engineered nanoparticles. J Appl Polym Sci. 2015;132(1):41229. https://doi.org/10.1002/app.41229.
Article
CAS
Google Scholar
Del Prado-Audelo ML, Magaña JJ, Mejía-Contreras BA, Borbolla-Jiménez FV, Giraldo-Gomez DM, Piña-Barba MC, et al. In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases. J Drug Deliv Sci Technol. 2019;52:905–14.
Article
CAS
Google Scholar
Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomedicine. 2017;12:4085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–65.
Article
CAS
PubMed
Google Scholar
Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, et al. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res. 2019;9(5):879–90. https://doi.org/10.1007/s13346-019-00622-5.
Article
CAS
PubMed
Google Scholar
Deepika MS, Thangam R, Sheena TS, Vimala RTV, Sivasubramanian S, Jeganathan K, et al. Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Mater Sci Eng C. 2019;103: 109716.
Article
CAS
Google Scholar
Bhakay A, Rahman M, Dave RN, Bilgili E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: formulation-processing aspects and challenges. Pharmaceutics. 2018;10(3):86.
Article
CAS
PubMed Central
Google Scholar
Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm. 2006;312(1–2):179–86.
Article
CAS
PubMed
Google Scholar
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roach P, Farrar D, Perry CC. Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc. 2005;127(22):8168–73. https://doi.org/10.1021/ja042898o.
Article
CAS
PubMed
Google Scholar
Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.
Article
CAS
PubMed
Google Scholar
Gessner A, Lieske A, Paulke BR, Müller RH. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54(2):165–70.
Article
CAS
PubMed
Google Scholar
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–5. https://doi.org/10.1073/pnas.0608582104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinelli F, Perale G, Rossi F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels. 2020;6(1):6.
Article
CAS
PubMed Central
Google Scholar
Du W, Fan Y, Zheng N, He B, Yuan L, Zhang H, et al. Transferrin receptor specific nanocarriers conjugated with functional 7peptide for oral drug delivery. Biomaterials. 2013;34(3):794–806.
Article
CAS
PubMed
Google Scholar
Tang S, Wang A, Yan X, Chu L, Yang X, Song Y, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv. 2019;26(1):700–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, Hirsch EC, et al. Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol. 1996;91(6):566–72.
Article
CAS
PubMed
Google Scholar
Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nanomaterials. 2018;8(3):178.
Article
PubMed Central
CAS
Google Scholar
Kang YS, Jung HJ, Oh JS, Song DY. Use of PEGylated immunoliposomes to deliver dopamine across the blood-brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther. 2016;22(10):817–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomed Nanotechnol Biol Med. 2018;14(8):2609–18.
Article
CAS
Google Scholar
Hu K, Chen X, Chen W, Zhang L, Li J, Ye J, et al. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomed Nanotechnol Biol Med. 2018;14(4):1123–36.
Article
CAS
Google Scholar
Huang R, Ma H, Guo Y, Liu S, Kuang Y, Shao K, et al. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of parkinson’s disease. Pharm Res. 2013;30(10):2549–59.
Article
CAS
PubMed
Google Scholar
Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol. 2018;48:21–9.
Article
CAS
Google Scholar
Zhao Y, Xiong S, Liu P, Liu W, Wang Q, Liu Y, et al. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. Int J Nanomedicine. 2020;15:10453–67.
Article
PubMed
PubMed Central
Google Scholar
Shadab MD, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48(3):393–405.
Article
CAS
Google Scholar
Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the effciency of parkinson’s disease treatment using a poly(lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol. 2014;23(3):246–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandes C, Martins C, Fonseca A, Nunes R, Matos MJ, Silva R, et al. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl Mater Interfaces. 2018;10(46):39557–69.
Article
CAS
PubMed
Google Scholar
Huang R, Han L, Li J, Ren F, Ke W, Jiang C, et al. Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles. J Gene Med. 2009;11(9):754–63. https://doi.org/10.1002/jgm.1361.
Article
CAS
PubMed
Google Scholar
Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, et al. Synthesis of CSK-DEX-PLGA nanoparticles for the oral delivery of exenatide to improve its mucus penetration and intestinal absorption. Mol Pharm. 2019;16(2):518–32. https://doi.org/10.1021/acs.molpharmaceut.8b00809.
Article
CAS
PubMed
Google Scholar
Kandilli B, Ugur Kaplan AB, Cetin M, Taspinar N, Ertugrul MS, Aydin IC, et al. Carbamazepine and levetiracetam-loaded PLGA nanoparticles prepared by nanoprecipitation method: in vitro and in vivo studies. Drug Dev Ind Pharm. 2020;46(7):1063–72. https://doi.org/10.1080/03639045.2020.1769127.
Article
CAS
PubMed
Google Scholar
CN104055735A. Semaglutide liposome and preparation method thereof. 2013. p. 1–21. https://patents.google.com/patent/CN104055735A/en. Accessed 28 Feb 2021.
Liu G, Yang J, Wang Y, Liu X, Guan LL, Chen L. Protein-lipid composite nanoparticles for the oral delivery of vitamin B 12: impact of protein succinylation on nanoparticle physicochemical and biological properties. Food Hydrocoll. 2019;92:189–97.
Article
CAS
Google Scholar
Sadozai SK, Khan SA, Karim N, Becker D, Steinbrück N, Gier S, et al. Ketoconazole-loaded PLGA nanoparticles and their synergism against Candida albicans when combined with silver nanoparticles. J Drug Deliv Sci Technol. 2020;56: 101574.
Article
CAS
Google Scholar
Jana U, Mohanty AK, Pal SL, Manna PK, Mohanta GP. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study. Nano Converg. 2014;1(1):31.
Article
CAS
Google Scholar
He Y, Zhan C, Pi C, Zuo Y, Yang S, Hu M, et al. Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique. AAPS PharmSciTech. 2020;21(5):170. https://doi.org/10.1208/s12249-020-01711-2.
Article
CAS
PubMed
Google Scholar
Saini D, Fazil M, Ali MM, Baboota S, Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv. 2015;22(6):823–36. https://doi.org/10.3109/10717544.2014.900153.
Article
CAS
PubMed
Google Scholar
Ravi PR, Aditya N, Kathuria H, Malekar S, Vats R. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87(1):114–24.
Article
CAS
PubMed
Google Scholar
Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395–404.
Article
CAS
PubMed
Google Scholar
ÖztÜrk N, Kara A, Vural İ. Formulation and in vitro evaluation of telmisartan nanoparticles prepared by emulsion-solvent evaporation technique. Turkish J Pharm Sci. 2020;17(5):492–9.
Article
CAS
Google Scholar
Abbasalipourkabir R, Fallah M, Sedighi F, Maghsood AH, Javid S. Nanocapsulation of nitazoxanide in solid lipid nanoparticles as a new drug delivery system and in vitro release study. J Biol Sci. 2016;16(4):120–7.
Article
CAS
Google Scholar
Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim K-H. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol. 2017;69(2):143–50.
Article
CAS
PubMed
Google Scholar
Archibald M, Pritchard T, Nehoff H, Rosengren RJ, Greish K, Taurin S. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. Int J Nanomedicine. 2016;11:179–201.
CAS
PubMed
PubMed Central
Google Scholar
Jayapal JJ, Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: formulation and in vitro evaluation. Int J Biol Macromol. 2017;105(Pt 1):416–21.
Article
CAS
PubMed
Google Scholar
Beck-Broichsitter M, Gauss J, Gessler T, Seeger W, Kissel T, Schmehl T. Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23(1):47–57.
Article
CAS
PubMed
Google Scholar
Valle IV, Machado ME, Araujo CDCB, Da Cunha-Junior EF, Da Silva PJ, Torres-Santos EC, et al. Oral pentamidine-loaded poly(d, l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology. 2019;30(45): 455102.
Article
CAS
PubMed
Google Scholar
Omarch G, Kippie Y, Mentor S, Ebrahim N, Fisher D, Murilla G, et al. Comparative in vitro transportation of pentamidine across the blood-brain barrier using polycaprolactone nanoparticles and phosphatidylcholine liposomes. Artif Cells Nanomed Biotechnol. 2019;47(1):1428–36.
Article
CAS
PubMed
Google Scholar
Manimekalai P, Dhanalakshmi R, Manavalan R. Preparation and characterization of ceftriaxone sodium encapsulated chitosan nanoparticles. Int J Appl Pharm. 2017;9(6):10.
Article
CAS
Google Scholar
Gattani SG, Moon RS. Formulation and evaluation of fast dissolving tablet containing vilazodone nanocrystals for solubility and dissolution enhancement using soluplus: in vitro-in vivo study. J Appl Pharm Sci. 2018;8(05):45–54.
CAS
Google Scholar
Jesus VPS, Raniero L, Lemes GM, Bhattacharjee TT, Caetano Júnior PC, Castilho ML. Nanoparticles of methylene blue enhance photodynamic therapy. Photodiagnosis Photodyn Ther. 2018;23:212–7.
Article
CAS
PubMed
Google Scholar
Khanna K, Sharma N, Rawat S, Khan N, Karwasra R, Hasan N, et al. Intranasal solid lipid nanoparticles for management of pain: a full factorial design approach, characterization & gamma scintigraphy. Chem Phys Lipids. 2021;236: 105060.
Article
CAS
PubMed
Google Scholar
Han FY, Liu Y, Kumar V, Xu W, Yang G, Zhao CX, et al. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int J Pharm. 2020;581: 119291.
Article
CAS
PubMed
Google Scholar
Kumar P, Sharma G, Kumar R, Malik R, Singh B, Katare OP, et al. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem Neurosci. 2017;8(4):860–5. https://doi.org/10.1021/acschemneuro.6b00428.
Article
CAS
PubMed
Google Scholar
Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7(MAY):607. https://doi.org/10.3389/fmicb.2016.00607.
Article
PubMed
PubMed Central
Google Scholar
Misra R, Sahoo SK. Antibacterial activity of doxycycline-loaded nanoparticles. Methods Enzymol. 2012;509:61–85.
Article
CAS
PubMed
Google Scholar