Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA. 2020;323(19):1945–60. https://doi.org/10.1001/jama.2020.4006.
Article
CAS
PubMed
Google Scholar
Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205–12. https://doi.org/10.1111/jdv.13854.
Article
CAS
PubMed
Google Scholar
Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. https://doi.org/10.1136/bmj.m1590.
Article
PubMed
PubMed Central
Google Scholar
GBD 2019 diseases and injuries collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet (London England). 2020;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9.
Article
Google Scholar
Damiani G, Bragazzi NL, Karimkhani Aksut C, Wu D, Alicandro G, McGonagle D, Guo C, Dellavalle R, Grada A, Wong P, et al. The global, regional, and national burden of psoriasis: results and insights from the global burden of disease 2019 study. Front Med (Lausanne). 2021;8:743180. https://doi.org/10.3389/fmed.2021.743180.
Article
Google Scholar
Yan B-X, Chen X-Y, Ye L-R, Chen J-Q, Zheng M, Man X-Y. Cutaneous and systemic psoriasis: classifications and classification for the distinction. Front Med (Lausanne). 2021;8:649408. https://doi.org/10.3389/fmed.2021.649408.
Article
Google Scholar
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. https://doi.org/10.1038/s41580-020-0230-3.
Article
CAS
PubMed
Google Scholar
Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38(7):592–607. https://doi.org/10.1016/j.tips.2017.04.005.
Article
CAS
PubMed
Google Scholar
Kuehne A, Emmert H, Soehle J, Winnefeld M, Fischer F, Wenck H, Gallinat S, Terstegen L, Lucius R, Hildebrand J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell. 2015;59(3):359–71. https://doi.org/10.1016/j.molcel.2015.06.017.
Article
CAS
PubMed
Google Scholar
Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell AL, Sweasy JB. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 2014;49(2):116–39. https://doi.org/10.3109/10409238.2013.875514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pukale SS, Sharma S, Dalela M, Singh AK, Mohanty S, Mittal A, Chitkara D. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in swiss albino mice. Acta Biomater. 2020;115:393–409. https://doi.org/10.1016/j.actbio.2020.08.020.
Article
CAS
PubMed
Google Scholar
Du H, Liu P, Zhu J, Lan J, Li Y, Zhang L, Zhu J, Tao J. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces. 2019;11(46):43588–98. https://doi.org/10.1021/acsami.9b15668.
Article
CAS
PubMed
Google Scholar
Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol. 2018;19(12):1286–98. https://doi.org/10.1038/s41590-018-0256-2.
Article
CAS
PubMed
Google Scholar
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 2020;5(20):e142067. https://doi.org/10.1172/jci.insight.142067.
Article
PubMed Central
Google Scholar
Trouba KJ, Hamadeh HK, Amin RP, Germolec DR. Oxidative stress and its role in skin disease. Antioxid Redox Signal. 2002;4(4):665–73. https://doi.org/10.1089/15230860260220175.
Article
CAS
PubMed
Google Scholar
Emmert H, Fonfara M, Rodriguez E, Weidinger S. NADPH oxidase inhibition rescues keratinocytes from elevated oxidative stress in a 2D atopic dermatitis and psoriasis model. Exp Dermatol. 2020;29(8):749–58. https://doi.org/10.1111/exd.14148.
Article
CAS
PubMed
Google Scholar
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176206.
Article
PubMed
PubMed Central
Google Scholar
Yan D, Afifi L, Jeon C, Trivedi M, Chang HW, Lee K, Liao W. The metabolomics of psoriatic disease. Psoriasis (Auckl). 2017;7(1):1–15. https://doi.org/10.2147/PTT.S118348.
Article
Google Scholar
Hao Y, Zhu Y-J, Zou S, Zhou P, Hu Y-W, Zhao Q-X, Gu L-N, Zhang H-Z, Wang Z, Li J. Metabolic syndrome and psoriasis: mechanisms and future directions. Front Immunol. 2021;12:711060. https://doi.org/10.3389/fimmu.2021.711060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19(1):19–30. https://doi.org/10.1038/s41577-018-0084-5.
Article
CAS
PubMed
Google Scholar
Streilein JW. Skin-associated lymphoid tissues (SALT): Origins and functions. J Invest Dermatol. 1983;80(Suppl):12s–6s. https://doi.org/10.1111/1523-1747.ep12536743.
Article
PubMed
Google Scholar
Streilein JW. Circuits and signals of the skin-associated lymphoid tissues (SALT). J Invest Dermatol. 1985;85(1 Suppl):10 s–13 s. https://doi.org/10.1111/1523-1747.ep12275413.
Article
Google Scholar
Sontheimer RD. Perivascular dendritic macrophages as immunobiological constituents of the human dermal microvascular unit. J Invest Dermatol. 1989;93(2 Suppl):96S–101S. https://doi.org/10.1111/1523-1747.
Article
CAS
PubMed
Google Scholar
Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–55. https://doi.org/10.1146/annurev-immunol-032713-120225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Suárez Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 2007;204(13):3183–94. https://doi.org/10.1084/jem.20071094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plenkowska J, Gabig-Ciminska M, Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21176206.
Article
PubMed
PubMed Central
Google Scholar
Xian D, Song J, Yang L, Xiong X, Lai R, Zhong J. Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxid Med Cell Longev. 2019;2019:2304018. https://doi.org/10.1155/2019/2304018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd SL, Terlecky SR. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol. 2008;128(11):2606–14. https://doi.org/10.1038/jid.2008.122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mailloux RJ, McBride SL, Harper M-E. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci. 2013;38(12):592–602. https://doi.org/10.1016/j.tibs.2013.09.001.
Article
CAS
PubMed
Google Scholar
Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol. 2021;21(6):363–81. https://doi.org/10.1038/s41577-020-00478-8.
Article
CAS
PubMed
Google Scholar
Boo YC. Natural Nrf2 modulators for skin protection. Antioxid (Basel). 2020;9(9):812. https://doi.org/10.3390/antiox9090812.
Article
CAS
Google Scholar
Xu F, Xu J, Xiong X, Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019;24(1):70–4. https://doi.org/10.1080/13510002.2019.1658377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao J-H, Yagita H, Okumura K, Doi T, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 2003;22(15):3898–909. https://doi.org/10.1093/emboj/cdg379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kennedy-Crispin M, Billick E, Mitsui H, Gulati N, Fujita H, Gilleaudeau P, Sullivan-Whalen M, Johnson-Huang LM, Suárez-Fariñas M, Krueger JG. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J Invest Dermatol. 2012;132(1):105–13. https://doi.org/10.1038/jid.2011.262.
Article
CAS
PubMed
Google Scholar
Bernard FX, Morel F, Camus M, Pedretti N, Barrault C, Garnier J, Lecron JC. Keratinocytes under fire of proinflammatory cytokines: bona fide innate immune cells involved in the physiopathology of chronic atopic dermatitis and psoriasis. J Allergy (Cairo). 2012;2012: 718725. https://doi.org/10.1155/2012/718725
Article
CAS
PubMed Central
Google Scholar
Kumari S, Bonnet MC, Ulvmar MH, Wolk K, Karagianni N, Witte E, Uthoff-Hachenberg C, Renauld J-C, Kollias G, Toftgard R, et al. Tumor necrosis factor receptor signaling in keratinocytes triggers interleukin-24-dependent psoriasis-like skin inflammation in mice. Immunity. 2013;39(5):899–911. https://doi.org/10.1016/j.immuni.2013.10.009.
Article
CAS
PubMed
Google Scholar
Kashiwagi M, Hosoi J, Lai JF, Brissette J, Ziegler SF, Morgan BA, Georgopoulos K. Direct control of regulatory T cells by keratinocytes. Nat Immunol. 2017;18(3):334–43. https://doi.org/10.1038/ni.3661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013;34(4):174–81. https://doi.org/10.1016/j.it.2012.11.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–91. https://doi.org/10.1038/nri2622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HR, Kim JC, Kang SY, Kim HO, Park CW, Chung BY. Rapamycin alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis by inducing autophagy. Int J Mol Sci. 2021;22(8):3968. https://doi.org/10.3390/ijms22083968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodby B, Sticozzi C, Pambianchi E, Villetti G, Civelli M, Valacchi G, Facchinetti F. The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. Arch Biochem Biophys. 2020;685:108355. https://doi.org/10.1016/j.abb.2020.108355.
Article
CAS
PubMed
Google Scholar
Nadeem A, Ahmad SF, Al-Harbi NO, El-Sherbeeny AM, Al-Harbi MM, Almukhlafi TS. GPR43 activation enhances psoriasis-like inflammation through epidermal upregulation of IL-6 and dual oxidase 2 signaling in a murine model. Cell Signal. 2017;33:59–68. https://doi.org/10.1016/j.cellsig.2017.02.014.
Article
CAS
PubMed
Google Scholar
Schon MP. Adaptive and innate immunity in psoriasis and other inflammatory disorders. Front Immunol. 2019;10:1764. https://doi.org/10.3389/fimmu.2019.01764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, Itami S, Nickoloff BJ, DiGiovanni J. STAT3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med. 2005;11(1):43–9. https://doi.org/10.1038/nm1162.
Article
CAS
PubMed
Google Scholar
Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, Huang Y, Li T, Yan J, Tu S. Sirt1: A potential therapeutic target in autoimmune diseases. Front Immunol. 2021;12:779177. https://doi.org/10.3389/fimmu.2021.779177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh V, Ubaid S. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation. Inflammation. 2020;43(5):1589–98. https://doi.org/10.1007/s10753-020-01242-9.
Article
CAS
PubMed
Google Scholar
Liu A, Zhang B, Zhao W, Tu Y, Wang Q, Li J. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered. 2021;12(1):183–95. https://doi.org/10.1080/21655979.2020.1863015.
Article
CAS
PubMed
Google Scholar
Wang Y, Huo J, Zhang D, Hu G, Zhang Y. Chemerin/ChemR23 axis triggers an inflammatory response in keratinocytes through ROS-SIRT1-NF-κB signaling. J Cell Biochem. 2019;120(4):6459–70. https://doi.org/10.1002/jcb.27936.
Article
CAS
PubMed
Google Scholar
Liu A, Zhao W, Zhang B, Tu Y, Wang Q, Li J. Cimifugin ameliorates imiquimod-induced psoriasis by inhibiting oxidative stress and inflammation via NF-κB/MAPK pathway. Biosci Rep. 2020;40(6):BSR20200471. https://doi.org/10.1042/BSR20200471.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiong H, Han L, Zhang N, Chen H, Yan K, Zhang Z, Ma Y, Xu J. Glycyrrhizin improves the pathogenesis of psoriasis partially through IL-17A and the SIRT1-STAT3 axis. BMC Immunol. 2021;22(1):34. https://doi.org/10.1186/s12865-021-00421-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Xie S, Su Z, Song S, Xu H, Chen G, Cao W, Yin S, Gao Q, Wang H. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of STAT3 signaling. Sci Rep. 2016;6:21132. https://doi.org/10.1038/srep21132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishitsuka Y, Ogawa T, Roop D. The KEAP1/NRF2 signaling pathway in keratinization. Antioxid (Basel). 2020;9(8):751. https://doi.org/10.3390/antiox9080751.
Article
CAS
Google Scholar
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen A-L, Kensler TW, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317. https://doi.org/10.1038/s41573-018-0008-x.
Article
CAS
PubMed
Google Scholar
Sangaraju R, Alavala S, Nalban N, Jerald MK, Sistla R. Galangin ameliorates Imiquimod-Induced psoriasis-like skin inflammation in BALB/c mice via down regulating NF-κB and activation of Nrf2 signaling pathways. Int Immunopharmacol. 2021;96:107754. https://doi.org/10.1016/j.intimp.2021.107754.
Article
CAS
PubMed
Google Scholar
Wang W, Yuhai, Wang H, Chasuna. Bagenna. Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biol Res. 2019;52(1):49. https://doi.org/10.1186/s40659-019-0255-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skutnik-Radziszewska A, Maciejczyk M, Fejfer K, Krahel J, Flisiak I, Kołodziej U, Zalewska A. Salivary antioxidants and oxidative stress in psoriatic patients: can salivary total oxidant status and oxidative status index be a plaque psoriasis biomarker? Oxid Med Cell Longev. 2020;2020:9086024. https://doi.org/10.1155/2020/9086024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melero JL, Andrades S, Arola L, Romeu A. Deciphering psoriasis. A bioinformatic approach. J Dermatol Sci. 2018;89(2):120–6. https://doi.org/10.1016/j.jdermsci.2017.11.010.
Article
CAS
PubMed
Google Scholar
Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, Verkman AS. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun. 2015;6:7454. https://doi.org/10.1038/ncomms8454.
Article
CAS
PubMed
Google Scholar
Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A. 2010;107(36):15681–6. https://doi.org/10.1073/pnas.1005776107.
Article
PubMed
PubMed Central
Google Scholar
Kuraitis D, Rosenthal N, Boh E, McBurney E. Macrophages in dermatology: pathogenic roles and targeted therapeutics. Arch Dermatol Res. 2022;314(2):133–40. https://doi.org/10.1007/s00403-021-02207-0.
Article
PubMed
Google Scholar
Wang H, Peters T, Kess D, Sindrilaru A, Oreshkova T, Van Rooijen N, Stratis A, Renkl AC, Sunderkötter C, Wlaschek M, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Investig. 2006;116(8):2105–14. https://doi.org/10.1172/JCI27180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nickoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Investig. 2004;113(12):1664–75. https://doi.org/10.1172/JCI22147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu Z-G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013;23(7):898–914. https://doi.org/10.1038/cr.2013.75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17. https://doi.org/10.1016/j.immuni.2015.02.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Peng C, Chen X, Wu L, Yin M, Li J, Qin Q, Kuang Y, Zhu W. Acitretin promotes the differentiation of myeloid-derived suppressor cells in the treatment of psoriasis. Front Med (Lausanne). 2021;8:625130. https://doi.org/10.3389/fmed.2021.625130.
Article
Google Scholar
Sunkari S, Thatikonda S, Pooladanda V, Challa VS, Godugu C. Protective effects of ambroxol in psoriasis like skin inflammation: exploration of possible mechanisms. Int Immunopharmacol. 2019;71:301–12. https://doi.org/10.1016/j.intimp.2019.03.035.
Article
CAS
PubMed
Google Scholar
Zhong J, Scholz T, Yau ACY, Guerard S, Hüffmeier U, Burkhardt H, Holmdahl R. Mannan-induced Nos2 in macrophages enhances IL-17-driven psoriatic arthritis by innate lymphocytes. Sci Adv. 2018;4(5):eaas9864. https://doi.org/10.1126/sciadv.aas9864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu S-S, Calcium. ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–33. https://doi.org/10.1152/ajpcell.00139.2004.
Article
CAS
PubMed
Google Scholar
Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Däbritz JHM, Gottlieb E, Latorre I, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016. https://doi.org/10.1016/j.cell.2016.08.064.
Article
PubMed
PubMed Central
Google Scholar
Harty LC, Biniecka M, O’Sullivan J, Fox E, Mulhall K, Veale DJ, Fearon U. Mitochondrial mutagenesis correlates with the local inflammatory environment in arthritis. Ann Rheum Dis. 2012;71(4):582–8. https://doi.org/10.1136/annrheumdis-2011-200245.
Article
CAS
PubMed
Google Scholar
Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. https://doi.org/10.1016/j.cell.2010.01.040.
Article
CAS
PubMed
Google Scholar
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.
Article
CAS
PubMed
Google Scholar
Verma D, Fekri SZ, Sigurdardottir G, Bivik Eding C, Sandin C, Enerback C. Enhanced inflammasome activity in patients with psoriasis promotes systemic inflammation. J Invest Dermatol. 2021;141(3):586–95 e585. https://doi.org/10.1016/j.jid.2020.07.012.
Article
CAS
PubMed
Google Scholar
Müller G, Lübow C, Weindl G. Lysosomotropic beta blockers induce oxidative stress and IL23A production in langerhans cells. Autophagy. 2020;16(8):1380–95. https://doi.org/10.1080/15548627.2019.1686728.
Article
CAS
PubMed
Google Scholar
Campbell NK, Fitzgerald HK, Malara A, Hambly R, Sweeney CM, Kirby B, Fletcher JM, Dunne A. Naturally derived heme-oxygenase 1 inducers attenuate inflammatory responses in human dendritic cells and T cells: relevance for psoriasis treatment. Sci Rep. 2018;8(1):10287. https://doi.org/10.1038/s41598-018-28488-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghoreschi K, Brück J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med. 2011;208(11):2291–303. https://doi.org/10.1084/jem.20100977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirino M, Kirino Y, Takeno M, Nagashima Y, Takahashi K, Kobayashi M, Murakami S, Hirasawa T, Ueda A, Aihara M, et al. Heme oxygenase 1 attenuates the development of atopic dermatitis-like lesions in mice: implications for human disease. J Allergy Clin Immunol. 2008;122(2):290–7. https://doi.org/10.1016/j.jaci.2008.05.031. 297.e1-8 .
Article
CAS
PubMed
Google Scholar
Mitterstiller A-M, Haschka D, Dichtl S, Nairz M, Demetz E, Talasz H, Soares MP, Einwallner E, Esterbauer H, Fang FC, et al. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol. 2016;18(10):1374–89. https://doi.org/10.1111/cmi.12578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chau L-Y. Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci. 2015;22:22. https://doi.org/10.1186/s12929-015-0128-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bambouskova M, Gorvel L, Lampropoulou V, Sergushichev A, Loginicheva E, Johnson K, Korenfeld D, Mathyer ME, Kim H, Huang L-H, et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis. Nature. 2018;556(7702):501–4. https://doi.org/10.1038/s41586-018-0052-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J Hepatol. 2017;66(4):693–702. https://doi.org/10.1016/j.jhep.2016.12.018.
Article
CAS
PubMed
Google Scholar
Feng L, Song P, Xu F, Xu L, Shao F, Guo M, Huang W, Kong L, Wu X, Xu Q. Cis-khellactone inhibited the proinflammatory macrophages via promoting autophagy to ameliorate imiquimod-induced psoriasis. J Invest Dermatol. 2019;139(9):1946-1956 e1943. https://doi.org/10.1016/j.jid.2019.02.021.
Article
CAS
PubMed
Google Scholar
Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, Okada T, Kusuba N, Otsuka A, Kitoh A, Honda T, et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol. 2014;15(11):1064–9. https://doi.org/10.1038/ni.2992.
Article
CAS
PubMed
Google Scholar
Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular mechanisms of NETosis. Annu Rev Cell Dev Biol. 2020;36:191–218. https://doi.org/10.1146/annurev-cellbio-020520-111016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA, Elkon KB, Kaplan MJ. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53. https://doi.org/10.1038/nm.4027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):32. https://doi.org/10.3390/biom9010032.
Article
CAS
PubMed Central
Google Scholar
Wójcik P, Garley M, Wroński A, Jabłońska E, Skrzydlewska E. Cannabidiol modifies the formation of NETs in neutrophils of psoriatic patients. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21186795.
Article
PubMed
PubMed Central
Google Scholar
Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti- NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. https://doi.org/10.1007/s12016-020-08804-7.
Article
CAS
PubMed
Google Scholar
Uppala R, Tsoi LC, Harms PW, Wang B, Billi AC, Maverakis E, Michelle Kahlenberg J, Ward NL, Gudjonsson JE. “Autoinflammatory psoriasis”-genetics and biology of pustular psoriasis. Cell Mol Immunol. 2021;18(2):307–17. https://doi.org/10.1038/s41423-020-0519-3.
Article
CAS
PubMed
Google Scholar
Haskamp S, Bruns H, Hahn M, Hoffmann M, Gregor A, Lohr S, Hahn J, Schauer C, Ringer M, Flamann C, et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am J Hum Genet. 2020;107(3):527–38. https://doi.org/10.1016/j.ajhg.2020.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Rosales YA, Langereis JD, Gorris MAJ, van den Reek J, Fasse E, Netea MG, de Vries IJM, Gomez-Munoz L, van Cranenbroek B, Korber A, et al. Immunomodulatory aged neutrophils are augmented in blood and skin of psoriasis patients. J Allergy Clin Immunol. 2021;148(4):1030–40. https://doi.org/10.1016/j.jaci.2021.02.041.
Article
CAS
PubMed
Google Scholar
Bacchetti T, Simonetti O, Ricotti F, Offidani A, Ferretti G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch Dermatol Res. 2020;312(1):33–9. https://doi.org/10.1007/s00403-019-01976-z.
Article
CAS
PubMed
Google Scholar
Baek J-O, Byamba D, Wu WH, Kim T-G, Lee M-G. Assessment of an imiquimod-induced psoriatic mouse model in relation to oxidative stress. Arch Dermatol Res. 2012;304(9):699–706. https://doi.org/10.1007/s00403-012-1272-y.
Article
CAS
PubMed
Google Scholar
Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77. https://doi.org/10.1038/nri3477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, Kang D. Mitochondrial reactive oxygen species are essential for the development of psoriatic inflammation. Front Immunol. 2021;12:714897. https://doi.org/10.3389/fimmu.2021.714897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Harbi NO, Nadeem A, Ahmad SF, Bakheet SA, El-Sherbeeny AM, Ibrahim KE, Alzahrani KS, Al-Harbi MM, Mahmood HM, Alqahtani F, et al. Therapeutic treatment with Ibrutinib attenuates imiquimod-induced psoriasis-like inflammation in mice through downregulation of oxidative and inflammatory mediators in neutrophils and dendritic cells. Eur J Pharmacol. 2020;877:173088. https://doi.org/10.1016/j.ejphar.2020.173088.
Article
CAS
PubMed
Google Scholar
Kim H-J, Barajas B, Chan RC-F, Nel AE. Glutathione depletion inhibits dendritic cell maturation and delayed-type hypersensitivity: implications for systemic disease and immunosenescence. J Allergy Clin Immunol. 2007;119(5):1225–33.
Article
CAS
Google Scholar
Amico D, Spadoni T, Rovinelli M, Serafini M, D’Amico G, Campelli N, Svegliati Baroni S, Gabrielli A. Intracellular free radical production by peripheral blood T lymphocytes from patients with systemic sclerosis: role of NADPH oxidase and ERK1/2. Arthritis Res Ther. 2015;17:68. https://doi.org/10.1186/s13075-015-0591-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esmaeili B, Mansouri P, Doustimotlagh AH, Izad M. Redox imbalance and IL-17 responses in memory CD4 T cells from patients with psoriasis. Scand J Immunol. 2019;89(1):e12730. https://doi.org/10.1111/sji.12730.
Article
CAS
PubMed
Google Scholar
Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep. 2018;23(1):130–5. https://doi.org/10.1080/13510002.2018.1462027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim B-H, Oh I, Kim J-H, Jeon J-E, Jeon B, Shin J, Kim T-Y. Anti-inflammatory activity of compounds isolated from Astragalus sinicus L. in cytokine-induced keratinocytes and skin. Exp Mol Med. 2014;46:e87. https://doi.org/10.1038/emm.2013.157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bivik Eding C, Köhler I, Verma D, Sjögren F, Bamberg C, Karsten S, Pham T, Scobie M, Helleday T, Warpman Berglund U, et al. MTH1 inhibitors for the treatment of psoriasis. J Invest Dermatol. 2021;141(8):2037–48. https://doi.org/10.1016/j.jid.2021.01.026.
Article
CAS
PubMed
Google Scholar
Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang H-g, Wang T, Zheng J, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610. https://doi.org/10.1016/j.immuni.2011.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Liu X, Liu Q, Guan Z, Luo J, Cao G, Cai R, Li Z, Xu Y, Wu Z, et al. Roles of mTORC1 and mTORC2 in controlling γδ T1 and γδ T17 differentiation and function. Cell Death Differ. 2020;27(7):2248–62. https://doi.org/10.1038/s41418-020-0500-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bielecki P, Riesenfeld SJ, Hütter J-C, Torlai Triglia E, Kowalczyk MS, Ricardo-Gonzalez RR, Lian M, Amezcua Vesely MC, Kroehling L, Xu H, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592(7852):128–32. https://doi.org/10.1038/s41586-021-03188-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbo M, Crinier A, Vély F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17(11):665–78. https://doi.org/10.1038/nri.2017.86.
Article
CAS
PubMed
Google Scholar
Walker JA, Barlow JL, McKenzie ANJ. Innate lymphoid cells–how did we miss them? Nat Rev Immunol. 2013;13(2):75–87. https://doi.org/10.1038/nri3349.
Article
CAS
PubMed
Google Scholar
Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, Cheuk S, Brouwer MWD, Menting SP, Eidsmo L, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–60. https://doi.org/10.1038/jid.2014.146.
Article
CAS
PubMed
Google Scholar
Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44 + ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–91. https://doi.org/10.1038/jid.2013.477.
Article
CAS
PubMed
Google Scholar
Ward NL, Umetsu DT. A new player on the psoriasis block: IL-17A- and IL-22-producing innate lymphoid cells. J Invest Dermatol. 2014;134(9):2305–7. https://doi.org/10.1038/jid.2014.216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B. Rorγt + innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Invest Dermatol. 2012;122(6):2252–6. https://doi.org/10.1172/JCI61862.
Article
CAS
Google Scholar
Chan T-Y, Yen C-L, Huang Y-F, Lo P-C, Nigrovic PA, Cheng C-Y, Wang W-Z, Wu S-Y, Shieh C-C. Increased ILC3s associated with higher levels of IL-1β aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol. 2019;49(11):2063–73. https://doi.org/10.1002/eji.201948141.
Article
CAS
PubMed
Google Scholar
von Bubnoff D, Andrès E, Hentges F, Bieber T, Michel T, Zimmer J. Natural killer cells in atopic and autoimmune diseases of the skin. J Allergy Clin Immunol. 2010;125(1):60–8. https://doi.org/10.1016/j.jaci.2009.11.020.
Article
CAS
Google Scholar
Polese B, Zhang H, Thurairajah B, King IL. Innate lymphocytes in psoriasis. Front Immunol. 2020;11:242. https://doi.org/10.3389/fimmu.2020.00242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato Y, Ogawa E, Okuyama R. Role of innate immune cells in psoriasis. Int J Mol Sci. 2020;21(18):6604. https://doi.org/10.3390/ijms21186604.
Article
CAS
PubMed Central
Google Scholar
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The role of natural killer cells in autoimmune diseases. Front Immunol. 2021;12:622306. https://doi.org/10.3389/fimmu.2021.622306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilhar A, Ullmann Y, Kerner H, Assy B, Shalaginov R, Serafimovich S, Kalish RS. Psoriasis is mediated by a cutaneous defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J Invest Dermatol. 2002;119(2):384–91. https://doi.org/10.1046/j.1523-1747.2002.01812.x.
Article
CAS
PubMed
Google Scholar
Kono F, Honda T, Aini W, Manabe T, Haga H, Tsuruyama T. Interferon-γ/CCR5 expression in invariant natural killer T cells and CCL5 expression in capillary veins of dermal papillae correlate with development of psoriasis vulgaris. Br J Dermatol. 2014;170(5):1048–55. https://doi.org/10.1111/bjd.12812.
Article
CAS
PubMed
Google Scholar
López-Soto A, Bravo-San Pedro JM, Kroemer G, Galluzzi L, Gonzalez S. Involvement of autophagy in NK cell development and function. Autophagy. 2017;13(3):633–6. https://doi.org/10.1080/15548627.2016.1274486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudenzio N, Laurent C, Valitutti S, Espinosa E. Human mast cells drive memory CD4 + T cells toward an inflammatory IL-22 + phenotype. J Allergy Clin Immunol. 2013;131(5):1400–7.e11. https://doi.org/10.1016/j.jaci.2013.01.029.
Article
CAS
PubMed
Google Scholar
Mashiko S, Bouguermouh S, Rubio M, Baba N, Bissonnette R, Sarfati M. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol. 2015;136(2):351-9.e1. https://doi.org/10.1016/j.jaci.2015.01.033.
Article
CAS
PubMed
Google Scholar
Shefler I, Pasmanik-Chor M, Kidron D, Mekori YA, Hershko AY. T cell-derived microvesicles induce mast cell production of IL-24: relevance to inflammatory skin diseases. J Allergy Clin Immunol. 2014; 133(1):217–24.e1-3. https://doi.org/10.1016/j.jaci.2013.04.035.
Zhang Y, Shi Y, Lin J, Li X, Yang B, Zhou J. Immune cell infiltration analysis demonstrates excessive mast cell activation in psoriasis. Front Immunol. 2021;12:773280. https://doi.org/10.3389/fimmu.2021.773280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS, Theoharides TC. Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol. 2009;183(10):6313–9. https://doi.org/10.4049/jimmunol.0803422.
Article
CAS
PubMed
Google Scholar
Zhang B, Alysandratos K-D, Angelidou A, Asadi S, Sismanopoulos N, Delivanis D-A, Weng Z, Miniati A, Vasiadi M, Katsarou-Katsari A, et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J Allergy Clin Immunol. 2011;127(6):1522–31.e8. https://doi.org/10.1016/j.jaci.2011.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelombitko MA, Averina OA, Vasilyeva TV, Pletiushkina OY, Popova EN, Fedorov AV, Chernyak BV, Shishkina VS, Ilinskaya OP. Mitochondria-targeted antioxidant skq1 (10-(6´-plastoquinonyl)decyltriphenylphosphonium bromide) inhibits mast cell degranulation in vivo and in vitro. Biochem (Mosc). 2017;82(12):1493–503. https://doi.org/10.1134/S0006297917120082.
Article
CAS
Google Scholar
Swindle EJ, Metcalfe DD. The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes. Immunol Rev. 2007;217:186–205. https://doi.org/10.1111/j.1600-065X.2007.00513.x.
Article
CAS
PubMed
Google Scholar
Herrmann A-K, Wüllner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A. Dimethyl fumarate alters intracellular ca handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med. 2019;141:338–47. https://doi.org/10.1016/j.freeradbiomed.2019.07.005.
Article
CAS
PubMed
Google Scholar
Hoffmann JHO, Schaekel K, Hartl D, Enk AH, Hadaschik EN. Dimethyl fumarate modulates neutrophil extracellular trap formation in a glutathione- and superoxide-dependent manner. Br J Dermatol. 2018;178(1):207–14. https://doi.org/10.1111/bjd.15839.
Article
CAS
PubMed
Google Scholar
Millar SA, Stone NL, Bellman ZD, Yates AS, England TJ, O’Sullivan SE. A systematic review of cannabidiol dosing in clinical populations. Br J Clin Pharmacol. 2019;85(9):1888–900. https://doi.org/10.1111/bcp.14038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atalay S, Jarocka-Karpowicz I, Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxid (Basel). 2019;9(1):21. https://doi.org/10.3390/antiox9010021.
Article
CAS
Google Scholar
Rajesh M, Mukhopadhyay P, Bátkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horváth B, Mukhopadhyay B, Becker L, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56(25):2115–25. https://doi.org/10.1016/j.jacc.2010.07.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakkas LI, Mavropoulos A, Zafiriou E, Roussaki-Schulze A, Bogdanos DP. The effect of apremilast on signal transduction and IL-10 production in CD39high regulatory B cells in patients with psoriatic arthritis. Mediterr J Rheumatol. 2018;29(1):59–61. https://doi.org/10.31138/mjr.29.1.59.
Article
PubMed
PubMed Central
Google Scholar
Mavropoulos A, Zafiriou E, Simopoulou T, Brotis AG, Liaskos C, Roussaki-Schulze A, Katsiari CG, Bogdanos DP, Sakkas LI. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatol (Oxford). 2019;58(12):2240–50. https://doi.org/10.1093/rheumatology/kez204.
Article
CAS
Google Scholar
Schafer PH, Parton A, Capone L, Cedzik D, Brady H, Evans JF, Man HW, Muller GW, Stirling DI, Chopra R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014;26(9):2016–29. https://doi.org/10.1016/j.cellsig.2014.05.014.
Article
CAS
PubMed
Google Scholar
Keating GM. Apremilast. A review in psoriasis and psoriatic arthritis. Drugs. 2017;77(4):459–72. https://doi.org/10.1007/s40265-017-0709-1.
Article
CAS
PubMed
Google Scholar
Toda K, Tsukayama I, Nagasaki Y, Konoike Y, Tamenobu A, Ganeko N, Ito H, Kawakami Y, Takahashi Y, Miki Y, et al. Red-kerneled rice proanthocyanidin inhibits arachidonate 5-lipoxygenase and decreases psoriasis-like skin inflammation. Arch Biochem Biophys. 2020;689:108307. https://doi.org/10.1016/j.abb.2020.108307.
Article
CAS
PubMed
Google Scholar
Patel RV, Clark LN, Lebwohl M, Weinberg JM. Treatments for psoriasis and the risk of malignancy. J Am Acad Dermatol. 2009;60(6):1001–17. https://doi.org/10.1016/j.jaad.2008.12.031.
Article
PubMed
Google Scholar
Blaner WS, Shmarakov IO, Traber MG. Vitamin A and vitamin E: will the real antioxidant please stand up? Annu Rev Nutr. 2021;41:105–31. https://doi.org/10.1146/annurev-nutr-082018-124228.
Article
CAS
PubMed
Google Scholar
Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397(10275):754–66. https://doi.org/10.1016/s0140-6736(21)00184-7.
Article
CAS
PubMed
Google Scholar
Tiwari N, Osorio Blanco E, Sonzogni A, Esporrin-Ubieto D, Wang H, Calderon M. Nanocarriers for skin applications: where do we stand? Angew Chem Int Ed Engl. 2021;61(3):e202107960. https://doi.org/10.1002/anie.202107960.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Huizen AM, Menting SP, Gyulai R, Iversen L, van der Kraaij GE, Middelkamp-Hup MA, Warren RB, Spuls PI, Schejtman AA, Egeberg A, et al. International edelphi study to reach consensus on the methotrexate dosing regimen in patients with psoriasis. JAMA Dermatol. 2022;158(5):561–72. https://doi.org/10.1001/jamadermatol.2022.0434.
Article
PubMed
Google Scholar
Wollina U, Tirant M, Vojvodic A, Lotti T. Treatment of psoriasis: novel approaches to topical delivery. Open Access Maced J Med Sci. 2019;7(18):3018–25. https://doi.org/10.3889/oamjms.2019.414.
Article
PubMed
PubMed Central
Google Scholar
Dadwal A, Mishra N, Narang RK. Novel topical nanocarriers for treatment of psoriasis: an overview. Curr Pharm Des. 2018;24(33):3934–50. https://doi.org/10.2174/1381612824666181102151507.
Article
CAS
PubMed
Google Scholar
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8. https://doi.org/10.1038/nbt.1504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2018;18(1):19–40. https://doi.org/10.1038/nrd.2018.183.
Article
CAS
PubMed
Google Scholar
Lee YJ, Bae JH, Kang S-G, Cho SW, Chun D-I, Nam SM, Kim CH, Nam HS, Lee SH, Lee SH, et al. Pro-oxidant status and Nrf2 levels in psoriasis vulgaris skin tissues and dimethyl fumarate-treated HaCaT cells. Arch Pharmacal Res. 2017;40(9):1105–16. https://doi.org/10.1007/s12272-017-0955-5.
Article
CAS
Google Scholar
Gesser B, Rasmussen MK, Iversen L. Dimethyl fumarate targets MSK1, RSK1, 2 and IKKα/β Kinases and regulates NF-κB /p65 activation in psoriasis: a demonstration of the effect on peripheral blood mononuclear cells, drawn from two patients with severe psoriasis before and after treatment with dimethyl fumarate. Psoriasis (Auckl). 2020;10:1–11. https://doi.org/10.2147/PTT.S234151.
Article
CAS
Google Scholar
Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360(6387):449–53. https://doi.org/10.1126/science.aan4665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landeck L, Asadullah K, Amasuno A, Pau-Charles I, Mrowietz U. Dimethyl fumarate (DMF) vs. monoethyl fumarate (MEF) salts for the treatment of plaque psoriasis: a review of clinical data. Arch Dermatol Res. 2018;310(6):475–83. https://doi.org/10.1007/s00403-018-1825-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin CY, Hsu CY, Elzoghby AO, Alalaiwe A, Hwang TL, Fang JY. Oleic acid as the active agent and lipid matrix in cilomilast-loaded nanocarriers to assist PDE4 inhibition of activated neutrophils for mitigating psoriasis-like lesions. Acta Biomater. 2019;90:350–61. https://doi.org/10.1016/j.actbio.2019.04.002.
Article
CAS
PubMed
Google Scholar
Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol. 2018;120(Pt A):1322–34. https://doi.org/10.1016/j.ijbiomac.2018.08.136.
Article
CAS
PubMed
Google Scholar
Kim JY, Ahn J, Kim J, Choi M, Jeon H, Choe K, Lee DY, Kim P, Jon S. Nanoparticle-assisted transcutaneous delivery of a signal transducer and activator of transcription 3-inhibiting peptide ameliorates psoriasis-like skin inflammation. ACS Nano. 2018;12(7):6904–16. https://doi.org/10.1021/acsnano.8b02330.
Article
CAS
PubMed
Google Scholar
Liu H, Kang RS, Bagnowski K, Yu JM, Radecki S, Daniel WL, Anderson BR, Nallagatla S, Schook A, Agarwal R, et al. Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis. J Invest Dermatol. 2020;140(2):435–44 e434. https://doi.org/10.1016/j.jid.2019.06.146.
Article
CAS
PubMed
Google Scholar
Wu K, Wu X, Guo J, Jiao Y, Zhou C. Facile polyphenol-europium assembly enabled functional poly(l-lactic acid) nanofiber mats with enhanced antioxidation and angiogenesis for accelerated wound healing. Adv Healthc Mater. 2021;10(19):e2100793. https://doi.org/10.1002/adhm.202100793.
Article
CAS
PubMed
Google Scholar
Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33(5):1607–17. https://doi.org/10.1016/j.biomaterials.2011.11.011.
Article
CAS
PubMed
Google Scholar
Yan Y, Liang H, Liu X, Liu L, Chen Y. Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials. 2021;276:121027. https://doi.org/10.1016/j.biomaterials.2021.121027.
Article
CAS
PubMed
Google Scholar
Ozcan A, Sahin D, Impellizzieri D, Nguyen TT, Hafner J, Yawalkar N, Kurzbach D, Tan G, Akdis CA, Nilsson J, et al. Nanoparticle-coupled topical methotrexate can normalize immune responses and induce tissue remodeling in psoriasis. J Invest Dermatol. 2020;140(5):1003–14 e1008. https://doi.org/10.1016/j.jid.2019.09.018.
Article
CAS
PubMed
Google Scholar
Han R, Ho LWC, Bai Q, Chan CKW, Lee LKC, Choi PC-L, Choi CHJ. Alkyl-terminated gold nanoparticles as a self-therapeutic treatment for psoriasis. Nano Lett. 2021;21(20):8723–33. https://doi.org/10.1021/acs.nanolett.1c02899.
Article
CAS
PubMed
Google Scholar
Keum H, Kim TW, Kim Y, Seo C, Son Y, Kim J, Kim D, Jung W, Whang C-H, Jon S. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release. 2020;325:359–69. https://doi.org/10.1016/j.jconrel.2020.07.015.
Article
CAS
PubMed
Google Scholar
Lee Y, Kim H, Kang S, Lee J, Park J, Jon S. Bilirubin nanoparticles as a nanomedicine for anti-inflammation therapy. Angew Chem Int Ed. 2016;55(26):7460–3. https://doi.org/10.1002/anie.201602525.
Article
CAS
Google Scholar
Sun H, Zhao Y, Zhang P, Zhai S, Li W, Cui J. Transcutaneous delivery of mung bean-derived nanoparticles for amelioration of psoriasis-like skin inflammation. Nanoscale. 2022;14(8):3040–8. https://doi.org/10.1039/d1nr08229a.
Article
CAS
PubMed
Google Scholar
Lopes Rocha Correa V, Assis Martins J, Ribeiro de Souza T, de Castro Nunes Rincon G, Pacheco Miguel M, Borges de Menezes L. Correa Amaral A. Melatonin loaded lecithin-chitosan nanoparticles improved the wound healing in diabetic rats. Int J Biol Macromol. 2020;162:1465–75. https://doi.org/10.1016/j.ijbiomac.2020.08.027.
Article
CAS
PubMed
Google Scholar
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c04206.
Article
PubMed
PubMed Central
Google Scholar
Yan X, Fang WW, Xue J, Sun TC, Dong L, Zha Z, Qian H, Song YH, Zhang M, Gong X, et al. Thermoresponsive in situ forming hydrogel with sol-gel irreversibility for effective methicillin-resistant staphylococcus aureus infected wound healing. ACS Nano. 2019;13(9):10074–84. https://doi.org/10.1021/acsnano.9b02845.
Article
CAS
PubMed
Google Scholar
Gan D, Xing W, Jiang L, Fang J, Zhao C, Ren F, Fang L, Wang K, Lu X. Plant-inspired adhesive and tough hydrogel based on ag-lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun. 2019;10(1):1487. https://doi.org/10.1038/s41467-019-09351-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batheja P, Sheihet L, Kohn J, Singer AJ, Michniak-Kohn B. Topical drug delivery by a polymeric nanosphere gel: formulation optimization and in vitro and in vivo skin distribution studies. J Control Release. 2011;149(2):159–67. https://doi.org/10.1016/j.jconrel.2010.10.005.
Article
CAS
PubMed
Google Scholar
Wan T, Pan Q, Ping Y. Microneedle-assisted genome editing: a transdermal strategy of targeting by CRISPR-Cas9 for synergistic therapy of inflammatory skin disorders. Sci Adv. 2021;7(11):eabe2888. https://doi.org/10.1126/sciadv.abe2888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye Y, Yu J, Wen D, Kahkoska AR, Gu Z. Polymeric microneedles for transdermal protein delivery. Adv Drug Deliv Rev. 2018;127:106–18. https://doi.org/10.1016/j.addr.2018.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater. 2021;121:119–33. https://doi.org/10.1016/j.actbio.2020.12.004.
Article
CAS
PubMed
Google Scholar
Ni D, Wei H, Chen W, Bao Q, Rosenkrans ZT, Barnhart TE, Ferreira CA, Wang Y, Yao H, Sun T, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater. 2019;31(40):e1902956. https://doi.org/10.1002/adma.201902956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Jin F, Liu D, Shu G, Wang X, Qi J, Sun M, Yang P, Jiang S, Ying X, et al. Ros-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342–57. https://doi.org/10.7150/thno.40395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weng Q, Sun H, Fang C, Xia F, Liao H, Lee J, Wang J, Xie A, Ren J, Guo X, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun. 2021;12(1):1436. https://doi.org/10.1038/s41467-021-21714-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng F, Wu Y, Li X, Ge X, Guo Q, Lou X, Cao Z, Hu B, Long NJ, Mao Y, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl. 2018;57(20):5808–12. https://doi.org/10.1002/anie.201802309.
Article
CAS
PubMed
Google Scholar
Kwon HJ, Cha M-Y, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for alzheimer’s disease. ACS Nano. 2016;10(2):2860–70. https://doi.org/10.1021/acsnano.5b08045.
Article
CAS
PubMed
Google Scholar
Kim J, Kim HY, Song SY, Go SH, Sohn HS, Baik S, Soh M, Kim K, Kim D, Kim HC, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206–17. https://doi.org/10.1021/acsnano.8b08785.
Article
CAS
PubMed
Google Scholar
Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in parkinson’s disease. Angew Chem Int Ed Engl. 2018;57(30):9408–12. https://doi.org/10.1002/anie.201805052.
Article
CAS
PubMed
Google Scholar
Wu L, Liu G, Wang W, Liu R, Liao L, Cheng N, Li W, Zhang W, Ding D. Cyclodextrin-modified ceo2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int J Nanomedicine. 2020;15:2515–27. https://doi.org/10.2147/IJN.S246783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Chen L, Xu X, Fan Y, Xue X, Shen M, Shi X. Targeted combination of antioxidative and anti-inflammatory therapy of rheumatoid arthritis using multifunctional dendrimer-entrapped gold nanoparticles as a platform. Small. 2020;16(49):e2005661. https://doi.org/10.1002/smll.202005661.
Article
CAS
PubMed
Google Scholar
Zhang D-Y, Tu T, Younis MR, Zhu KS, Liu H, Lei S, Qu J, Lin J, Huang P. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics. 2021;11(20):9904–17. https://doi.org/10.7150/thno.66518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moyano DF, Liu Y, Ayaz F, Hou S, Puangploy P, Duncan B, Osborne BA, Rotello VM. Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated and murine model systems. Chem. 2016;1(2):320–7. https://doi.org/10.1016/j.chempr.2016.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemati H, Ghahramani M-H, Faridi-Majidi R, Izadi B, Bahrami G, Madani S-H, Tavoosidana G. Using siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation in psoriasis. J Control Release. 2017;268:259–68. https://doi.org/10.1016/j.jconrel.2017.10.034.
Article
CAS
PubMed
Google Scholar
Ninan N, Goswami N, Vasilev K. The impact of engineered silver nanomaterials on the immune system. Nanomaterials (Basel). 2020;10(5):967. https://doi.org/10.3390/nano10050967.
Article
CAS
Google Scholar
Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, Zhou W. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2021;264:120390. https://doi.org/10.1016/j.biomaterials.2020.120390.
Article
CAS
PubMed
Google Scholar
Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, et al. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy. Int J Nanomedicine. 2020;15:2011–26. https://doi.org/10.2147/IJN.S242919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao K, Roome T, Aziz S, Razzak A, Abbas G, Imran M, Jabri T, Gul J, Hussain M, Sikandar B, et al. Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J Mater Chem B. 2018;6(27):4486–501. https://doi.org/10.1039/c8tb00672e.
Article
CAS
PubMed
Google Scholar
Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, Loh HS, Lim YP, Lee CF, Bhattamishra SK, et al. Silver nanoparticles: advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl. 2020;112:110925. https://doi.org/10.1016/j.msec.2020.110925.
Article
CAS
PubMed
Google Scholar
Crisan D, Scharffetter-Kochanek K, Crisan M, Schatz S, Hainzl A, Olenic L, Filip A, Schneider LA, Sindrilaru A. Topical silver and gold nanoparticles complexed with cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp Dermatol. 2018;27(10):1166–9. https://doi.org/10.1111/exd.13707.
Article
CAS
PubMed
Google Scholar
Xu J, Chen H, Chu Z, Li Z, Chen B, Sun J, Lai W, Ma Y, He Y, Qian H, et al. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. J Nanobiotechnol. 2022;20(1):155. https://doi.org/10.1186/s12951-022-01368-y.
Article
CAS
Google Scholar
Qindeel M, Khan D, Ahmed N, Khan S, Asim Ur R. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano. 2020;14(4):4662–81. https://doi.org/10.1021/acsnano.0c00364.
Article
CAS
PubMed
Google Scholar
Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R, Mamedov MR, Vo LT, Tobin VR, Goodman D, Shifrut E, et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol. 2020;38(1):44–9. https://doi.org/10.1038/s41587-019-0325-6.
Article
CAS
PubMed
Google Scholar
Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901. https://doi.org/10.1038/s41551-017-0137-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng B, Liang H, Li Y, Dong C, Shen J, Mao HQ, Leong KW, Chen Y, Liu L. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis treatment. Angew Chem Int Ed Engl. 2019;58(13):4254–8. https://doi.org/10.1002/anie.201813362.
Article
CAS
PubMed
Google Scholar
Liang H, Peng B, Dong C, Liu L, Mao J, Wei S, Wang X, Xu H, Shen J, Mao H-Q, et al. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat Commun. 2018;9(1):4291. https://doi.org/10.1038/s41467-018-06603-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coimbra S, Catarino C, Costa E, Oliveira H, Figueiredo A, Rocha-Pereira P, Santos-Silva A. Circulating cell-free DNA levels in portuguese patients with psoriasis vulgaris according to severity and therapy. Br J Dermatol. 2014;170(4):939–42. https://doi.org/10.1111/bjd.12738.
Article
CAS
PubMed
Google Scholar
Mondelo-Macía P, Castro-Santos P, Castillo-García A, Muinelo-Romay L, Diaz-Peña R. Circulating free DNA and its emerging role in autoimmune diseases. J Pers Med. 2021;11(2):151. https://doi.org/10.3390/jpm11020151.
Article
PubMed
PubMed Central
Google Scholar
Liang H, Yan Y, Wu J, Ge X, Wei L, Liu L, Chen Y. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci Adv. 2020;6(31):eabb5274. https://doi.org/10.1126/sciadv.abb5274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ragothaman M, Kannan Villalan A, Dhanasekaran A, Palanisamy T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater Sci Eng C Mater Biol Appl. 2021;128:112328. https://doi.org/10.1016/j.msec.2021.112328.
Article
CAS
PubMed
Google Scholar
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean A-M. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules. 2020;10(9):1211. https://doi.org/10.3390/biom10091211.
Article
CAS
PubMed Central
Google Scholar
Slominski A, Fischer TW, Zmijewski MA, Wortsman J, Semak I, Zbytek B, Slominski RM, Tobin DJ. On the role of melatonin in skin physiology and pathology. Endocrine. 2005;27(2):137–48. https://doi.org/10.1385/ENDO:27:2:137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scuderi SA, Cucinotta L, Filippone A, Lanza M, Campolo M, Paterniti I, Esposito E. Effect of melatonin on psoriatic phenotype in human reconstructed skin model. Biomedicines. 2022;10(4):752. https://doi.org/10.3390/biomedicines10040752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slominski AT, Zmijewski MA, Semak I, Kim T-K, Janjetovic Z, Slominski RM, Zmijewski JW. Melatonin, mitochondria, and the skin. Cell Mol Life Sci. 2017;74(21):3913–25. https://doi.org/10.1007/s00018-017-2617-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo C, Lu L, Liu D, Wei K. Development of erianin-loaded dendritic mesoporous silica nanospheres with pro-apoptotic effects and enhanced topical delivery. J Nanobiotechnol. 2020;18(1):55. https://doi.org/10.1186/s12951-020-00608-3.
Article
CAS
Google Scholar
Damiani G, Pacifico A, Linder DM, Pigatto PDM, Conic R, Grada A, Bragazzi NL. Nanodermatology-based solutions for psoriasis: state-of-the art and future prospects. Dermatol Ther. 2019;32(6):e13113. https://doi.org/10.1111/dth.13113.
Article
PubMed
Google Scholar
Khezri K, Saeedi M, Maleki Dizaj S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed Pharmacother. 2018;106:1499–505. https://doi.org/10.1016/j.biopha.2018.07.084.
Article
CAS
PubMed
Google Scholar
Kang N-W, Kim M-H, Sohn S-Y, Kim K-T, Park J-H, Lee S-Y, Lee J-Y, Kim D-D. Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials. 2018;182:245–58. https://doi.org/10.1016/j.biomaterials.2018.08.030.
Article
CAS
PubMed
Google Scholar
Yu F, Zhang Y, Yang C, Li F, Qiu B, Ding W. Enhanced transdermal efficiency of curcumin-loaded peptide-modified liposomes for highly effective antipsoriatic therapy. J Mater Chem B. 2021;9(24):4846–56. https://doi.org/10.1039/d1tb00557j.
Article
CAS
PubMed
Google Scholar
Suzuki IL, de Araujo MM, Bagnato VS, Bentley MVLB. TNFα siRNA delivery by nanoparticles and photochemical internalization for psoriasis topical therapy. J Control Release. 2021;338:316–29. https://doi.org/10.1016/j.jconrel.2021.08.039.
Article
CAS
PubMed
Google Scholar
Zhang Y, Xia Q, Li Y, He Z, Li Z, Guo T, Wu Z, Feng N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics. 2019;9(1):48–64. https://doi.org/10.7150/thno.29715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34. https://doi.org/10.1002/adma.201104763.
Article
CAS
PubMed
Google Scholar
Mora-Raimundo P, Lozano D, Benito M, Mulero F, Manzano M, Vallet-Regí M. Osteoporosis remission and new bone formation with mesoporous silica nanoparticles. Adv Sci. 2021;8(16):e2101107. https://doi.org/10.1002/advs.202101107.
Article
CAS
Google Scholar
Pham LM, Kim E-C, Ou W, Phung CD, Nguyen TT, Pham TT, Poudel K, Gautam M, Nguyen HT, Jeong J-H, et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials. 2021;269:120677. https://doi.org/10.1016/j.biomaterials.2021.120677.
Article
CAS
PubMed
Google Scholar
Mai Y, Ouyang Y, Yu M, Qin Y, Girardi M, Saltzman WM, Cocco E, Zhao C, Yu L, Jia Y, et al. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release. 2022;349:354–66. https://doi.org/10.1016/j.jconrel.2022.07.006.
Article
CAS
PubMed
Google Scholar
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4:33. https://doi.org/10.1038/s41392-019-0068-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shravanth SH, Osmani RAM, Anupama LJS, Rahamathulla VP, Gangadharappa M. HV. Microneedles-based drug delivery for the treatment of psoriasis. J Drug Deliv Sci Technol. 2021;64:102668. https://doi.org/10.1016/j.jddst.2021.102668.
Article
CAS
Google Scholar
Jing Q, Ruan H, Li J, Wang Z, Pei L, Hu H, He Z, Wu T, Ruan S, Guo T, et al. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials. 2021;278:121142. https://doi.org/10.1016/j.biomaterials.2021.121142.
Article
CAS
PubMed
Google Scholar
Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):e2100176. https://doi.org/10.1002/adma.202100176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong C, Wu Q, Wang Y, Zhang D, Luo F, Zhao X, Wei Y, Qian Z. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials. 2013;34(27):6377–87. https://doi.org/10.1016/j.biomaterials.2013.05.005.
Article
CAS
PubMed
Google Scholar
Sun L, Liu Z, Wang L, Cun D, Tong HHY, Yan R, Chen X, Wang R, Zheng Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded plga nanoparticles in hydrogel. J Control Release. 2017;254:44–54. https://doi.org/10.1016/j.jconrel.2017.03.385.
Article
CAS
PubMed
Google Scholar
Rana K, Pani T, Jha SK, Mehta D, Yadav P, Jain D, Pradhan MK, Mishra S, Kar R. G BR et al. Hydrogel-mediated topical delivery of steroids can effectively alleviate psoriasis attenuating the autoimmune responses. Nanoscale. 2022;14(10):3834–48. https://doi.org/10.1039/d1nr06001e.
Article
CAS
PubMed
Google Scholar
Qiu F, Xi L, Chen S, Zhao Y, Wang Z, Zheng Y. Celastrol niosome hydrogel has anti-inflammatory effect on skin keratinocytes and circulation without systemic drug exposure in psoriasis mice. Int J Nanomedicine. 2021;16:6171–82. https://doi.org/10.2147/IJN.S323208.
Article
PubMed
PubMed Central
Google Scholar