Giannopoulou L, Zavridou M, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: the potential of circulating miRNAs and exosomes. Transl Res. 2019;205:77–91.
Article
CAS
Google Scholar
Li S, Yi M, Dong B, Tan X, Luo S, Wu K. The role of exosomes in liquid biopsy for cancer diagnosis and prognosis prediction. Int J Cancer. 2020. https://doi.org/10.1002/ijc.33386.
Article
Google Scholar
Chun-Yan L, Zi-Yi Z, Tian-Lin Y, Yi-Li W, Bao L, Jiao L, et al. Liquid biopsy biomarkers of renal interstitial fibrosis based on urinary exosome. Exp Mol Pathol. 2018;105(2):223–8.
Article
CAS
Google Scholar
Li G, Tang W, Yang F. Cancer liquid biopsy using integrated microfluidic exosome analysis platforms. Biotechnol J. 2020;15(5):1900225.
Article
CAS
Google Scholar
Cui S, Cheng Z, Qin W, Jiang L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer. 2018;116:46–54.
Article
Google Scholar
Zhang W, Xia W, Lv Z, Xin Y, Ni C, Yang L. Liquid biopsy for cancer: circulating tumor cells, circulating free DNA or exosomes? Cell Physiol Biochem. 2017;41(2):755–68.
Article
Google Scholar
Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, et al. Exosomes in cancer liquid biopsy: a focus on breast cancer. Mol Ther-Nucl Acids. 2018;10:131–41.
Article
CAS
Google Scholar
Wang JC, Bégin LR, Bérubé NG, Chevalier S, Aprikian AG, Gourdeau H, et al. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res. 2007;13(8):2354–61.
Article
CAS
Google Scholar
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.
Article
CAS
Google Scholar
Jin H, Liu P, Wu Y, Meng X, Wu M, Han J, et al. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci. 2018;109(9):2946–56.
Article
CAS
Google Scholar
Sandfeld-Paulsen B, Jakobsen KR, Bæk R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11(10):1701–10.
Article
Google Scholar
Kimura H, Yamamoto H, Harada T, Fumoto K, Osugi Y, Sada R, et al. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res. 2019;25(6):1936–47.
Article
CAS
Google Scholar
Di Santo R, Romanò S, Mazzini A, Jovanović S, Nocca G, Campi G, et al. Recent advances in the label-free characterization of exosomes for cancer liquid biopsy: from scattering and spectroscopy to nanoindentation and nanodevices. Nanomaterials. 2021;11(6):1476.
Article
CAS
Google Scholar
Baddela VS, Nayan V, Rani P, Onteru SK, Singh D. Physicochemical biomolecular insights into buffalo milk-derived nanovesicles. Appl Biochem Biotechnol. 2016;178(3):544–57.
Article
CAS
Google Scholar
Mihály J, Deák R, Szigyártó IC, Bóta A, Beke-Somfai T, Varga Z. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and C[sbnd]H stretching vibrations. Biochim Biophys Acta—Biomembr. 2017;1859(3):459–66.
Article
Google Scholar
Ciasca G, Di Giacinto F, Tartaglione L, Nardini M, Mazzini A, Romanò S, et al. Searching for the mechanical fingerprint of prediabetes in T1DM: a case report study. Front Bioeng Biotechnol. 2020;8:1099.
Google Scholar
Polito R, Musto M, Temperini ME, Ballerini L, Ortolani M, Baldassarre L, et al. Infrared nanospectroscopy of individual extracellular microvesicles. Molecules. 2021;26(4):887.
Article
CAS
Google Scholar
Lee J, Wen B, Carter EA, Combes V, Grau GER, Lay PA. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. FASEB J. 2017;31:2817–27.
Article
CAS
Google Scholar
Yap XL, Ong TA, Lim J, Wood B, Lee WL. Study of prostate cancer-derived extracellular vesicles in urine using IR spectroscopy. Prog Drug Discov Biomed Sci. 2019;2(1):4–7.
Article
Google Scholar
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70.
Article
CAS
Google Scholar
Martins TS, Magalhães S, Rosa IM, Vogelgsang J, Wiltfang J, Delgadillo I, et al. Potential of FTIR spectroscopy applied to exosomes for Alzheimer’s disease discrimination: a pilot study. J Alzheimer’s Dis. 2020. https://doi.org/10.3233/JAD-191034.
Article
Google Scholar
Primiano A, Persichilli S, Di Giacinto F, Ciasca G, Baroni S, Ferraro PM, et al. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) detection as a rapid and convenient screening test for cystinuria. Clin Chim Acta. 2021. https://doi.org/10.1016/j.cca.2021.03.017.
Article
Google Scholar
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, et al. Machine learning-assisted FTIR analysis of circulating extracellular vesicles for cancer liquid biopsy. J Pers Med. 2022;12(6):949.
Article
Google Scholar
Stępień E, Kamińska A, Surman M, Karbowska D, Wróbel A, Przybyło M. Fourier-Transform InfraRed (FT-IR) spectroscopy to show alterations in molecular composition of EV subpopulations from melanoma cell lines in different malignancy. Biochem Biophys Rep. 2021;25:100888.
Google Scholar
Glassford SE, Byrne B, Kazarian SG. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta (BBA) Proteins Proteom. 2013;1834(12):2849–58.
Article
CAS
Google Scholar
Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun. 2013;4(1):1–10.
Article
Google Scholar
Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci. 2009;106(46):19227–32.
Article
CAS
Google Scholar
Rodrigo D, Tittl A, Ait-Bouziad N, John-Herpin A, Limaj O, Kelly C, et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat Commun. 2018;9(1):1–9.
Article
CAS
Google Scholar
Pucci A, Neubrech F, Weber D, Hong S, Toury T, de La Chapelle ML. Surface enhanced infrared spectroscopy using gold nanoantennas. Phys Stat Sol (b). 2010;247(8):2071–4.
Article
CAS
Google Scholar
Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117(7):5110–45.
Article
CAS
Google Scholar
De Ninno A, Ciasca G, Gerardino A, Calandrini E, Papi M, De Spirito M, et al. An integrated superhydrophobic-plasmonic biosensor for mid-infrared protein detection at the femtomole level. Phys Chem Chem Phys. 2015;17(33):21337.
Article
CAS
Google Scholar
Zong C, Xu M, Xu LJ, Wei T, Ma X, Zheng XS, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem Rev. 2018;118(10):4946–80.
Article
CAS
Google Scholar
Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377(3):528–39.
Article
CAS
Google Scholar
Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32(5):490–5.
Article
CAS
Google Scholar
Liu C, Zeng X, An Z, Yang Y, Eisenbaum M, Gu X, et al. Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sensors. 2018;3(8):1471–9.
Article
CAS
Google Scholar
Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–77.
Article
CAS
Google Scholar
Bathini S, Raju D, Badilescu S, Packirisamy M. Microfluidic plasmonic bio-sensing of exosomes by using a gold nano-island platform. Int J Biomed Biol Eng. 2018;12(5):236–9.
Google Scholar
Wu X, Zhao H, Natalia A, Lim CZJ, Ho NRY, Ong CAJ, et al. Exosome-templated nanoplasmonics for multiparametric molecular profiling. Sci Adv. 2020;6(19):eaba2556.
Article
CAS
Google Scholar
Businaro L, Limaj O, Giliberti V, Ortolani M, Di Gaspare A, Grenci G, et al. Mid-infrared nanoantenna arrays on silicon and CaF 2 substrates for sensing applications. Microelectron Eng. 2012;97:197.
Article
CAS
Google Scholar
Ciasca G, Papi M, Businaro L, Campi G, Ortolani M, Palmieri V, et al. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine. Bioinspir Biomim. 2016;11(1):011001.
Article
CAS
Google Scholar
Baldassarre L, Giliberti V, Rosa A, Ortolani M, Bonamore A, Baiocco P, et al. Mapping the amide I absorption in single bacteria and mammalian cells with resonant infrared nanospectroscopy. Nanotechnology. 2016;27(7):75101.
Article
CAS
Google Scholar
Wiecha PR. pyGDM—A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures. Comput Phys Commun. 2018;233:167–92.
Article
CAS
Google Scholar
Fogh J, Trempe G. New human tumor cell lines. In: Fogh J, editor. Human tumor cells in vitro. Berlin: Springer; 1975. p. 115–59.
Chapter
Google Scholar
Mossman D, Kim KT, Scott RJ. Demethylation by 5-aza-2’-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer. 2010;10(1):1–10.
Article
Google Scholar
Choi PM, Tchou-Wong KM, Weinstein IB. Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression. Mol Cell Biol. 1990;10(9):4650–7.
CAS
Google Scholar
Lenaerts K, Bouwman FG, Lamers WH, Renes J, Mariman EC. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics. 2007;8(1):1–14.
Article
Google Scholar
Martínez-Maqueda D, Miralles B, Recio I. HT29 cell line. In: Verhoeckx K, editor. The impact of food bioactives on health. Berlin: Springer; 2015. p. 113–24.
Google Scholar
Appay PM, Simon-Assmann P, Chevalier G, Dracopoli N, Fogh J, Zweibaum A. Enterocytic differentiation of cultured human colon cancer cells by replacement of glu-cose by galactose in the medium. Biol Cell. 1982;44:193–6.
Google Scholar
Wang X, Ding X, Nan L, Wang Y, Wang J, Yan Z, et al. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncol Rep. 2015;33(5):2445.
Article
CAS
Google Scholar
Woo JR, Sharma S, Gimzewski J. The role of isolation methods on a nanoscale surface structure and its effect on the size of exosomes. J Circ Biomark. 2016;5:1–9.
Article
Google Scholar
Papiewska-Pająk I, Przygodzka P, Krzyżanowski D, Soboska K, Szulc-Kiełbik I, Stasikowska-Kanicka O, et al. Snail overexpression alters the microRNA content of extracellular vesicles released from HT29 colorectal cancer cells and activates Pro-inflammatory state in vivo. Cancers. 2021;13(2):172.
Article
Google Scholar
Koliha N, Wiencek Y, Heider U, Jü Ngst C, Kladt N, Krauthä User S, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles cologne excellence cluster on cellular stress responses in aging-associated diseases. J Extracell Vesicles. 2016;1(17):1–15.
Google Scholar
Roche J. The epithelial-to-mesenchymal transition in cancer. Basel: Multidisciplinary Digital Publishing Institute; 2018.
Book
Google Scholar
Romanō S, Di Giacinto F, Primiano A, Gervasoni J, Mazzini A, Papi M, et al. Label-free spectroscopic characterization of exosomes reveals cancer cell differentiation. Anal Chim Acta. 2022;1192:339359.
Article
Google Scholar
Krasnowska EK, Pittaluga E, Brunati AM, Brunelli R, Costa G, De Spirito M, et al. N-acetyl-l-cysteine fosters inactivation and transfer to endolysosomes of c-Src. Free Radic Biol Med. 2008. https://doi.org/10.1016/j.freeradbiomed.2008.09.012.
Article
Google Scholar
Ciasca G, Papi M, Minelli E, Palmieri V, De Spirito M. Changes in cellular mechanical properties during onset or progression of colorectal cancer. World J Gastroenterol. 2016. https://doi.org/10.3748/wjg.v22.i32.7203.
Article
Google Scholar
Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4(6):470–80.
Article
CAS
Google Scholar
Parasassi T, Brunelli R, Costa G, De Spirito M, Krasnowska E, Lundeberg T, et al. Thiol redox transitions in cell signaling: a lesson from N-acetylcysteine. Sci World J. 2010;10:1192–202.
Article
CAS
Google Scholar
Parasassi T, Brunelli R, Bracci-Laudiero L, Greco G, Gustafsson AC, Krasnowska EK, et al. Differentiation of normal and cancer cells induced by sulfhydryl reduction: Biochemical and molecular mechanisms. Cell Death Differ. 2005;12(10):1285.
Article
CAS
Google Scholar
Gustafsson AC, Kupershmidt I, Edlundh-Rose E, Greco G, Serafino A, Krasnowska EK, et al. Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro. BMC Cancer. 2005;5(1):1–19.
Article
Google Scholar
Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA, Huth F, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4(1):1–9.
Article
Google Scholar
Dong L, Sun X, Chao Z, Zhang S, Zheng J, Gurung R, et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;122:288–94.
Article
CAS
Google Scholar
Bamberger C, Diedrich J, Martìnez-Bartholomé S, Yates JR III. Cancer conformational landscape shapes tumorigenesis. J Proteome Res. 2022;21(4):1017–28.
Article
CAS
Google Scholar
Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62.
Article
CAS
Google Scholar
Dale B, Cheng M, Park KS, Kaniskan HÜ, Xiong Y, Jin J. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21(10):638–54.
Article
CAS
Google Scholar
Wang W, Qin J, Voruganti S, Nag S, Zhou J, Zhang R. Polycomb group (PcG) proteins and human cancers: multifaceted functions and therapeutic implications. Med Res Rev. 2015;35(6):1220–67.
Article
CAS
Google Scholar
Pietrowska M, Zebrowska A, Gawin M, Marczak L, Sharma P, Mondal S, et al. Proteomic profile of melanoma cell-derived small extracellular vesicles in patients’ plasma: a potential correlate of melanoma progression. J Extracell Vesicles. 2021;10(4):e12063.
Article
CAS
Google Scholar
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182(4):1044–61.
Article
CAS
Google Scholar
Tai Y, Chen K, Hsieh J, Shen T. Exosomes in cancer development and clinical applications. Cancer Sci. 2018;109(8):2364–74.
Article
CAS
Google Scholar
Xiao Y, Li Y, Yuan Y, Liu B, Pan S, Liu Q, et al. The potential of exosomes derived from colorectal cancer as a biomarker. Clin Chim Acta. 2019;490:186–93.
Article
CAS
Google Scholar
De Rubis G, Krishnan SR, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci. 2019;40(3):172–86.
Article
Google Scholar
Krishnamurthy N, Spencer E, Torkamani A, Nicholson L. Liquid biopsies for cancer: coming to a patient near you. J Clin Med. 2017;6(1):3.
Article
Google Scholar
Parikh AR, Leshchiner I, Elagina L, Goyal L, Levovitz C, Siravegna G, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25(9):1415–21.
Article
CAS
Google Scholar
Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.
Article
CAS
Google Scholar
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. JNCI: J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djx118.
Article
Google Scholar
Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472.
Article
CAS
Google Scholar
Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, et al. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE. 2009;4(4):e5219.
Article
Google Scholar
Fellows AP, Casford MTL, Davies PB. Spectral analysis and deconvolution of the amide I band of proteins presenting with high-frequency noise and baseline shifts. Appl Spectrosc. 2020;74(5):597–615.
Article
CAS
Google Scholar
Sadat A, Joye IJ. Peak fitting applied to Fourier transform infrared and Raman spectroscopic analysis of proteins. Appl Sci. 2020;10(17):5918.
Article
CAS
Google Scholar
Movasaghi Z, Rehman S, Rehman IU. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43:134–79.
Article
CAS
Google Scholar
Talari ACS, Martinez MAG, Movasaghi Z, Rehman S, Rehman IU. Advances in Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2017;52:456–506.
Article
CAS
Google Scholar
Geinguenaud F, Militello V, Arluison V. Application of FTIR spectroscopy to analyze RNA structure. In: Arluison V, Wien F, editors. RNA spectroscopy. Berlin: Springer; 2020. p. 119–33.
Chapter
Google Scholar
Romanò S, Di Giacinto F, Primiano A, Mazzini A, Panzetta C, Papi M, et al. Fourier Transform Infrared Spectroscopy as a useful tool for the automated classification of cancer cell-derived exosomes obtained under different culture conditions. Anal Chim Acta. 2020;1140:219–27.
Article
Google Scholar
Romanò S, Di Giacinto F, Primiano A, Gervasoni J, Mazzini A, Papi M, et al. Label-free spectroscopic characterization of exosomes reveals cancer cell differentiation. Analytica Chimica Acta. 2021;339359.
Zlotogorski-Hurvitz A, Dekel BZ, Malonek D, Yahalom R, Vered M. FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating analysis in the diagnosis of oral cancer. J Cancer Res Clin Oncol. 2019;145(3):685–94.
Article
CAS
Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020. https://doi.org/10.1126/science.aau6977.
Article
Google Scholar
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968–77.
Article
CAS
Google Scholar
Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2(1):1–6.
Article
Google Scholar
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917–34.
Article
CAS
Google Scholar
Wang X, Shen X, Sheng D, Chen X, Liu X. FTIR spectroscopic comparison of serum from lung cancer patients and healthy persons. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;122:193–7.
Article
CAS
Google Scholar
Yamada T, Miyoshi N, Ogawa T, Akao K, Fukuda M, Ogasawara T, et al. Observation of molecular changes of a necrotic tissue from a murine carcinoma by Fourier-transform infrared microspectroscopy. Clin Cancer Res. 2002;8(6):2010–4.
CAS
Google Scholar
Wang K, Li T, Xu C, Ding Y, Li W, Ding L. Claudin-7 downregulation induces metastasis and invasion in colorectal cancer via the promotion of epithelial-mesenchymal transition. Biochem Biophys Res Commun. 2019;508(3):797–804.
Article
CAS
Google Scholar
Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol. 2007;107(3):563–71.
Article
CAS
Google Scholar
Hsu YT, Osmulski P, Wang Y, Huang YW, Liu L, Ruan J, et al. EpCAM-regulated transcription exerts influences on nanomechanical properties of endometrial cancer cells that promote epithelial-to-mesenchymal transition. Can Res. 2016;76(21):6171–82.
Article
CAS
Google Scholar
Reiner AT, Tan S, Agreiter C, Auer K, Bachmayr-Heyda A, Aust S, et al. EV-associated MMP9 in high-grade serous ovarian cancer is preferentially localized to annexin V-binding EVs. Dis Markers. 2017;2017:1–9.
Article
Google Scholar
Mathivanan S, Lim JWE, Tauro BJ, Ji H, Moritz RL, Simpson RJ. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010;9(2):197–208.
Article
CAS
Google Scholar
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol. 2019;42(4):226–39.
Article
CAS
Google Scholar
Wang Y, Hong D, Qian Y, Tu X, Wang K, Yang X, et al. lupeol inhibits growth and migration in two human colorectal cancer cell lines by suppression of Wnt–β-catenin pathway. Onco Targets Ther. 2018;11:7987.
Article
CAS
Google Scholar
Buscail E, Chauvet A, Quincy P, Degrandi O, Buscail C, Lamrissi I, et al. CD63-GPC1-positive exosomes coupled with CA19-9 offer good diagnostic potential for resectable pancreatic ductal adenocarcinoma. Transl Oncol. 2019;12(11):1395–403.
Article
Google Scholar
Chen C, Mehl BT, Munshi AS, Townsend AD, Spence DM, Martin RS. 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Anal Methods. 2016;8(31):6005–12.
Article
Google Scholar
Kim K, Park SW, Yang SS. The optimization of PDMS-PMMA bonding process using silane primer. BioChip J. 2010;4(2):148–54.
Article
CAS
Google Scholar
Karlsson JM, Gazin M, Laakso S, Haraldsson T, Malhotra-Kumar S, Mäki M, et al. Active liquid degassing in microfluidic systems. Lab Chip. 2013;13(22):4366–73.
Article
CAS
Google Scholar
Liang DY, Tentori AM, Dimov IK, Lee LP. Systematic characterization of degas-driven flow for poly (dimethylsiloxane) microfluidic devices. Biomicrofluidics. 2011;5(2):24108.
Article
Google Scholar
Park S, Cho H, Kim J, Han KH. Lateral degassing method for disposable film-chip microfluidic devices. Membranes. 2021;11(5):316.
Article
CAS
Google Scholar
Lee SH, Song J, Cho B, Hong S, Hoxha O, Kang T, et al. Bubble-free rapid microfluidic PCR. Biosens Bioelectron. 2019;126:725–33.
Article
CAS
Google Scholar
Zheng W, Wang Z, Zhang W, Jiang X. A simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells. Lab Chip. 2010;10(21):2906–10.
Article
CAS
Google Scholar
Monaghan T, Harding MJ, Harris RA, Friel RJ, Christie SDR. Customisable 3D printed microfluidics for integrated analysis and optimisation. Lab Chip. 2016;16(17):3362–73.
Article
CAS
Google Scholar
Amin R, Knowlton S, Hart A, Yenilmez B, Ghaderinezhad F, Katebifar S, et al. 3D-printed microfluidic devices. Biofabrication. 2016;8(2):22001.
Article
Google Scholar
Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip. 2016;16(11):1993–2013.
Article
CAS
Google Scholar
Ciasca G, Businaro L, De Ninno A, Cedola A, Notargiacomo A, Campi G, et al. Wet sample confinement by superhydrophobic patterned surfaces for combined X-ray fluorescence and X-ray phase contrast imaging. Microelectron Eng. 2013. https://doi.org/10.1016/j.mee.2013.02.020.
Article
Google Scholar
Tirinato L, Gentile F, Di Mascolo D, Coluccio ML, Das G, Liberale C, et al. SERS analysis on exosomes using super-hydrophobic surfaces. Microelectron Eng. 2012;97:337–40.
Article
CAS
Google Scholar
Zhang P, Moretti M, Allione M, Tian Y, Ordonez-Loza J, Altamura D, et al. A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. Commun Biol. 2020;3(1):1–13.
Article
Google Scholar
Prats-Alfonso E, Albericio F. Functionalization of gold surfaces: recent developments and applications. J Mater Sci. 2011;46(24):7643–8.
Article
CAS
Google Scholar
Vermette P, Gengenbach T, Divisekera U, Kambouris PA, Griesser HJ, Meagher L. Immobilization and surface characterization of NeutrAvidin biotin-binding protein on different hydrogel interlayers. J Colloid Interface Sci. 2003;259(1):13–26.
Article
CAS
Google Scholar
Vidic J, Pla-Roca M, Grosclaude J, Persuy MA, Monnerie R, Caballero D, et al. Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem. 2007;79(9):3280–90.
Article
CAS
Google Scholar
Vorselen D, Piontek MC, Roos WH, Wuite GJL. Mechanical characterization of liposomes and extracellular vesicles, a protocol. Front Mol Biosci. 2020;7:1–14.
Article
Google Scholar
Arteaga-Blanco LA, Mojoli A, Monteiro RQ, Sandim V, Menna-Barreto RFS, Pereira-Dutra FS, et al. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PLoS ONE. 2020;15(8):e0237795.
Article
CAS
Google Scholar