Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.
Article
Google Scholar
Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PH, Boere AJF. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11:4542–52.
Article
CAS
Google Scholar
Maher BA, Ahmed IA, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DM, Torres-Jardón R, Calderon-Garciduenas L. Magnetite pollution nanoparticles in the human brain. Proc Natl Acad Sci. 2016;113:10797–801.
Article
CAS
Google Scholar
Saenen ND, Bové H, Steuwe C, Roeffaers MB, Provost EB, Lefebvre W, Vanpoucke C, Ameloot M, Nawrot TS. Children’s urinary environmental carbon load. A novel marker reflecting residential ambient air pollution exposure? Am J Respir Crit Care Med. 2017;196:873–81.
Article
Google Scholar
Janssen NA, Hoek G, Simic-Lawson M, Fischer P, Van Bree L, Ten Brink H, Keuken M, Atkinson RW, Anderson HR, Brunekreef B. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM 10 and PM 2.5. Environ Health Perspect. 2011;119:1691.
Article
CAS
Google Scholar
Krzyzanowski M, Kuna-Dibbert B, Schneider J. Health effects of transport-related air pollution. In: WHO reports. WHO Regional Office Europe; 2005.
Mills NL, Miller MR, Lucking AJ, Beveridge J, Flint L, Boere AJF, Fokkens PH, Boon NA, Sandstrom T, Blomberg A. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur Heart J. 2011;32:2660–71.
Article
CAS
Google Scholar
Grahame TJ, Schlesinger RB. Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health. 2010;3:3–27.
Article
CAS
Google Scholar
van Tongeren M, Gardiner K, Rossiter C, Beach J, Harber P, Harrington M. Longitudinal analyses of chest radiographs from the European carbon black respiratory morbidity study. Eur Respir J. 2002;20:417–25.
Article
Google Scholar
Dobrovolskaia MA, Shurin MR, Kagan VE, Shvedova AA. Ins and outs in environmental and occupational safety studies of asthma and engineered nanomaterials. ACS Nano. 2017;11:7565–71.
Article
CAS
Google Scholar
Donaldson K, Hunter A, Poland C, Smith S. Mechanism of action of combustion-derived nanoparticles. In: Purser D, Maynard R, Wakefield J, editors. Toxicology, survival and health hazards of combustion products. London: Royal Society of Chemistry; 2015. p. 361–81.
Chapter
Google Scholar
Stone V, Johnston H, Clift MJ. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci. 2007;6:331–40.
Article
Google Scholar
Bové H, Steuwe C, Fron E, Slenders E, D’Haen J, Fujita Y, Uji-i H, vandeVen M, Roeffaers M, Ameloot M. Biocompatible label-free detection of carbon black particles by femtosecond pulsed laser microscopy. Nano Lett. 2016;16:3173–8.
Article
Google Scholar
White ES. Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc. 2015;12:S30–3.
Article
Google Scholar
Glaros T, Larsen M, Li L. Macrophages and fibroblasts during inflammation, tissue damage and organ injury. Front Biosci. 2009;14:3988–93.
Article
CAS
Google Scholar
Dai Y, Niu Y, Duan H, Bassig BA, Ye M, Zhang X, Meng T, Bin P, Jia X, Shen M. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. Environ Mol Mutagen. 2016;57:615–22.
Article
CAS
Google Scholar
Poudel BK, Park JH, Lim J, Byeon JH. Direct fluorescent labeling for efficient biological assessment of inhalable particles. Nanotoxicology. 2017;11:953–63.
Article
CAS
Google Scholar
Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol. 2003;109:250–65.
Article
CAS
Google Scholar
Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdörster G. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology. 2012;297:1–9.
Article
CAS
Google Scholar
Phalen RF, Oldham MJ, Nel AE. Tracheobronchial particle dose considerations for in vitro toxicology studies. Toxicol Sci. 2006;92:126–32.
Article
CAS
Google Scholar
Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–9.
Article
CAS
Google Scholar
Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6:1794–807.
Article
CAS
Google Scholar
Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115:1631–7.
Article
CAS
Google Scholar
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41:284–90.
Article
CAS
Google Scholar
Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine. 2016;11:269–87.
Article
CAS
Google Scholar
Ryan J. Endotoxins and cell culture. Corning Life Sci Tech Bull. 2004:1–8. http://www.gongyingshi.com/item/doc/20141221/cc_endotoxins_tc_305_rev1.pdf. Accessed 11 Oct 2018.
Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26:6811–7.
Article
CAS
Google Scholar
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–12.
Article
CAS
Google Scholar
Li B, Wang JHC. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability. 2011;20:108–20.
Article
Google Scholar
Jorge-Penas A, Bové H, Sanen K, Vaeyens M-M, Steuwe C, Roeffaers M, Ameloot M, Van Oosterwyck H. 3D full-field quantification of cell-induced large deformation in fibrillary biomaterials by combining non-rigid image registration with label-free second harmonic generation. Biomaterials. 2017;136:86–97.
Article
CAS
Google Scholar
Boland S, Hussain S, Baeza-Squiban A. Carbon black and titanium dioxide nanoparticles induce distinct molecular mechanisms of toxicity. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:641–52.
Article
CAS
Google Scholar
Koike E, Kobayashi T. Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere. 2006;65:946–51.
Article
CAS
Google Scholar
Cao Y, Roursgaard M, Danielsen PH, Møller P, Loft S. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS ONE. 2014;9:e106711.
Article
Google Scholar
Frikke-Schmidt H, Roursgaard M, Lykkesfeldt J, Loft S, Nøjgaard JK, Møller P. Effect of vitamin C and iron chelation on diesel exhaust particle and carbon black induced oxidative damage and cell adhesion molecule expression in human endothelial cells. Toxicol Lett. 2011;203:181–9.
Article
CAS
Google Scholar
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013;2013:942916.
Article
Google Scholar
Sies H. Oxidative stress. Amsterdam: Elsevier; 2013.
Google Scholar
Sheridan C, Martin SJ. Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion. 2010;10:640–8.
Article
CAS
Google Scholar
Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.
Article
CAS
Google Scholar
Alaimo A, Gorojod RM, Beauquis J, Munoz MJ, Saravia F, Kotler ML. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS ONE. 2014;9:e91848.
Article
Google Scholar
Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280:26185–92.
Article
CAS
Google Scholar
Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–60.
Article
CAS
Google Scholar
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.
Article
CAS
Google Scholar
Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 2004;337:1–13.
Article
CAS
Google Scholar
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.
Article
CAS
Google Scholar
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.
Article
CAS
Google Scholar
Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. Toxicol Sci. 2013;138:117–29.
Article
Google Scholar
Hussain S, Thomassen LC, Ferecatu I, Borot M-C, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol. 2010;7:10.
Article
Google Scholar
Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. W.H: Freeman; 2002.
Google Scholar
Bershadsky A. Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges. J Cell Sci. 1986;82:235–48.
PubMed
Google Scholar
Nishimura Y, Romer LH, Lemasters JJ. Mitochondrial dysfunction and cytoskeletal disruption during chemical hypoxia to cultured rat hepatic sinusoidal endothelial cells: the pH paradox and cytoprotection by glucose, acidotic pH, and glycine. Hepatology. 1998;27:1039–49.
Article
CAS
Google Scholar
Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–65.
Article
CAS
Google Scholar
Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10:21–33.
Article
CAS
Google Scholar
Schwarz US, Gardel ML. United we stand—integrating the actin cytoskeleton and cell—matrix adhesions in cellular mechanotransduction. J Cell Sci. 2012;125:3051–60.
Article
CAS
Google Scholar
Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol. 2014;30:68–73.
Article
CAS
Google Scholar