Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12:137.
Article
PubMed
PubMed Central
Google Scholar
Hawkes N. Cancer survival data emphasise importance of early diagnosis. BMJ. 2019;364:l408.
Article
PubMed
Google Scholar
Choi Y-E, Kwak J-W, Park JW. Nanotechnology for early cancer detection. Sensors. 2010;10:428–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. 2015;115:10530–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korecká L, Vytřas K, Bílková Z. Immunosensors in early cancer diagnostics: from individual to multiple biomarker assays. Curr Med Chem. 2018;25:3973–87.
Article
PubMed
CAS
Google Scholar
Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discovery. 2012;11:201–14.
Article
PubMed
CAS
Google Scholar
Wang J, Chen G, Jiang H, Li Z, Wang X. Advances in nano-scaled biosensors for biomedical applications. Analyst. 2013;138:4427–35.
Article
PubMed
CAS
Google Scholar
Nimse SB, Sonawane MD, Song K-S, Kim T. Biomarker detection technologies and future directions. Analyst. 2016;141:740–55.
Article
PubMed
CAS
Google Scholar
Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, et al. Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol. 2019;132:190–202.
Article
PubMed
CAS
Google Scholar
Huang Y, Zhu H. Protein array-based approaches for biomarker discovery in cancer. Genom Proteom Bioinform. 2017;15:73–81.
Article
Google Scholar
Hull L, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research: view from NCI alliance for nanotechnology in cancer. Biotechnol Adv. 2014;32:666–78.
Article
PubMed
CAS
Google Scholar
Sharifi M, Avadi MR, Attar F, Dashtestani F, Ghorchian H, Rezayat SM, et al. Cancer diagnosis using nanomaterials based electrochemical nanobiosensors. Biosens Bioelectron. 2019;126:773–84.
Article
PubMed
CAS
Google Scholar
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.
Article
PubMed
PubMed Central
Google Scholar
Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, et al. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kamali H, Nosrati R, Malaekeh-Nikouei B. Chapter 1-Nanostructures and their associated challenges for drug delivery. In: Kesharwani P, Jain NK, editors. Hybrid nanomaterials for drug delivery. Woodhead Publishing; 2022. p. 1–26.
Google Scholar
McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. ChSRv. 2021;50:8954–94.
CAS
Google Scholar
Huo W, Li X, Wang B, Zhang H, Zhang J, Yang X, et al. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy. Biophys Rep. 2020;6:256–65.
Article
CAS
Google Scholar
Zhang J. RNA-cleaving DNAzymes: Old catalysts with new tricks for intracellular and in vivo applications. Catalysts. 2018;8:550.
Article
CAS
Google Scholar
Khan S, Burciu B, Filipe CD, Li Y, Dellinger K, Didar TF. DNAzyme-based biosensors: immobilization strategies, applications, and future prospective. ACS Nano. 2021;15:13943–69.
Article
PubMed
CAS
Google Scholar
Thomas IBK, Gaminda KAP, Jayasinghe CD, Abeysinghe DT, Senthilnithy R. DNAzymes, novel therapeutic agents in cancer therapy: a review of concepts to applications. J Nucleic Acids. 2021;2021:9365081.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gong L, Zhao Z, Lv Y-F, Huan S-Y, Fu T, Zhang X-B, et al. DNAzyme-based Biosens nanodevices ChCom. 2015;51:979–95.
CAS
Google Scholar
Gong L, Lv Y-F, Liang H, Huan S-Y, Zhang X-B, Zhang WJ. DNAzyme conjugated nanomaterials for biosensing applications. Rev Anal Chem. 2014;33:201–12.
Article
CAS
Google Scholar
Darmostuk M, Rimpelova S, Gbelcova H, Ruml T. Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv. 2015;33:1141–61.
Article
PubMed
CAS
Google Scholar
Sefah K, Phillips JA, Xiong X, Meng L, Van Simaeys D, Chen H, et al. Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst. 2009;134:1765–75.
Article
PubMed
CAS
Google Scholar
Wang Q, Liu W, Xing Y, Yang X, Wang K, Jiang R, et al. Screening of DNA aptamers against myoglobin using a positive and negative selection units integrated microfluidic chip and its biosensing application. AnaCh. 2014;86:6572–9.
CAS
Google Scholar
Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4:e223.
Article
PubMed
PubMed Central
Google Scholar
Ghasemi Z, Dinarvand R, Mottaghitalab F, Esfandyari-Manesh M, Sayari E, Atyabi F. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Carbohydr Polym. 2015;121:190–8.
Article
PubMed
CAS
Google Scholar
Mokhtarzadeh A, Dolatabadi JEN, Abnous K, de la Guardia M, Ramezani M. Nanomaterial-based cocaine aptasensors. Biosens Bioelectron. 2015;68:95–106.
Article
PubMed
CAS
Google Scholar
Yan S-R, Foroughi MM, Safaei M, Jahani S, Ebrahimpour N, Borhani F, et al. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int J Biol Macromol. 2020;155:184–207.
Article
PubMed
CAS
Google Scholar
Hassan EM, DeRosa MC. Recent advances in cancer early detection and diagnosis: role of nucleic acid based aptasensors. TrAC Trends Anal Chem. 2020;124:115806.
Article
CAS
Google Scholar
Kazemi Asl S, Rahimzadegan M. Recent advances in the fabrication of nano-aptasensors for the detection of troponin as a main biomarker of acute myocardial infarction. Crit Rev Anal Chem. 2021; 2021:1–20. (Published online: 02 Sep 2021)
Google Scholar
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim Y-B, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst. 2020;145:4398–420.
Article
PubMed
CAS
Google Scholar
Ma X, Ding W, Wang C, Wu H, Tian X, Lyu M, et al. DNAzyme biosensors for the detection of pathogenic bacteria. Sensors Actuators B Chem. 2021;331: 129422.
Article
CAS
Google Scholar
Wang G, Wang Y, Chen L, Choo J. Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron. 2010;25:1859–68.
Article
PubMed
CAS
Google Scholar
Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens Bioelectron. 2020;148:111833.
Article
PubMed
CAS
Google Scholar
Li L, Chen Y, Zhu J-J. Recent advances in electrochemiluminescence analysis. AnaCh. 2017;89:358–71.
CAS
Google Scholar
Grunnet M, Sorensen J. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer. 2012;76:138–43.
Article
PubMed
CAS
Google Scholar
Hall C, Clarke L, Pal A, Buchwald P, Eglinton T, Wakeman C, et al. A review of the role of carcinoembryonic antigen in clinical practice. Ann Coloproctol. 2019;35:294–305.
Article
PubMed
PubMed Central
Google Scholar
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta. 2020;214:120716.
Article
PubMed
CAS
Google Scholar
Tang H, Wang H, Yang C, Zhao D, Qian Y, Li Y. Nanopore-based strategy for selective detection of single carcinoembryonic antigen (CEA) molecules. AnaCh. 2020;92:3042–9.
CAS
Google Scholar
Cao JT, Wang YL, Zhang JJ, Zhou YJ, Ren SW, Liu YM. Efficient electrochemiluminescence quenching of carbon-coated petalous CdS nanoparticles for an ultrasensitive tumor marker assay through coreactant consumption by G-quadruplex-hemin decorated Au nanorods. RSC Adv. 2016;6:86682–7.
Article
CAS
Google Scholar
Ge L, Wang W, Hou T, Li F. A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosens Bioelectron. 2016;77:220–6.
Article
PubMed
CAS
Google Scholar
Khang H, Cho K, Chong S, Lee JH. All-in-one dual-aptasensor capable of rapidly quantifying carcinoembryonic antigen. Biosens Bioelectron. 2017;90:46–52.
Article
PubMed
CAS
Google Scholar
Huang JY, Zhao L, Lei W, Wen W, Wang YJ, Bao T, et al. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron. 2018;99:28–33.
Article
PubMed
CAS
Google Scholar
Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, et al. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol. 2012;34:507–15.
Article
Google Scholar
Rad F, Mohsenifar A, Tabatabaei M, Safarnejad M, Shahryari F, Safarpour H, et al. Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J. Plant Pathol. 2012;94:525–34.
Google Scholar
Wu N, Wang Y-T, Wang X-Y, Guo F-N, Wen H, Yang T, et al. Enhanced peroxidase-like activity of AuNPs loaded graphitic carbon nitride nanosheets for colorimetric biosensing. Anal Chim Acta. 2019;1091:69–75.
Article
PubMed
CAS
Google Scholar
Zhang J-H, Wei M-J, Wei Z-W, Pan M, Su C-Y. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Appl Nano Mater. 2020;3:1010–8.
Article
CAS
Google Scholar
Lin KL, Yang T, Zou HY, Li YF, Huang CZ. Graphitic C3N4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers. Talanta. 2019;192:400–6.
Article
PubMed
CAS
Google Scholar
Heldin C-H, Lennartsson J, Westermark B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J Intern Med. 2018;283:16–44.
Article
PubMed
CAS
Google Scholar
Chen P-H, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta BBA Proteins Proteom. 2013;1834:2176–86.
Article
CAS
Google Scholar
Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, et al. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron. 2018;113:58–71.
Article
PubMed
CAS
Google Scholar
Zou X, Tang X-Y, Qu Z-Y, Sun Z-W, Ji C-F, Li Y-J, et al. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: a review. Int J Biol Macromol. 2022;202:539–57.
Article
PubMed
CAS
Google Scholar
Heldin CH. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal. 2013;11:97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bi S, Luo B, Ye J, Wang Z. Label-free chemiluminescent aptasensor for platelet-derived growth factor detection based on exonuclease-assisted cascade autocatalytic recycling amplification. Biosens Bioelectron. 2014;62:208–13.
Article
PubMed
CAS
Google Scholar
Park SA, Jeong MS, Ha K-T, Jang SB. Structure and function of vascular endothelial growth factor and its receptor system. BMB Rep. 2018;51:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang G, Yin P, Wang J, Ma P, Wang Y, Cai Y, et al. Specific heptapeptide screened from pIII phage display library for sensitive enzyme-linked chemiluminescence immunoassay of vascular endothelial growth factor. Sens Actuators B: Chem. 2021;333:129555.
Article
CAS
Google Scholar
Patel KA, Patel BM, Thobias AR, Gokani RA, Chhikara AB, Desai AD, et al. Overexpression of VEGF165 is associated with poor prognosis of cervical cancer. J Obstet Gynaecol Res. 2020;46:2397–406.
Article
PubMed
CAS
Google Scholar
Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carpini JD, Karam AK, Montgomery L. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis. 2010;13:43–58.
Article
PubMed
CAS
Google Scholar
Siregar K. VEGFR overexpression as a promising predictive and prognostic biomarker for breast cancer. J Health Translational Med. 2016;19:26–30.
Article
Google Scholar
Zhang H, Li M, Li C, Guo Z, Dong H, Wu P, et al. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron. 2015;74:98–103.
Article
PubMed
CAS
Google Scholar
Duffy MJ. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med (CCLM). 2020;58:326–39.
Article
CAS
Google Scholar
Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, et al. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron. 2018;118:160–6.
Article
PubMed
CAS
Google Scholar
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9:276.
Article
PubMed Central
CAS
Google Scholar
Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell & bioscience. 2020;10:1–13.
Article
CAS
Google Scholar
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 2019;70:3–20.
Article
PubMed
CAS
Google Scholar
Xu C, Li M, Zhang L, Bi Y, Wang P, Li J, et al. MicroRNA-205 suppresses the invasion and epithelial-mesenchymal transition of human gastric cancer cells. Mol Med Rep. 2016;13:4767–73.
Article
PubMed
CAS
Google Scholar
Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: a potential biomedicine for cancer therapy. Cells. 2020;9:1957.
Article
PubMed Central
CAS
Google Scholar
Kim K, Park P, Lee JH. Cost-effective monitoring of microRNA-205 applied as a biomarker using G-quadruplex DNAzyme and 1,1’-oxalyldiimidazole chemiluminescence. J Pharm Biomed Anal. 2019;175: 112780.
Article
PubMed
CAS
Google Scholar
Zhang P, Ouyang Y, Willner I. Multiplexed and amplified chemiluminescence resonance energy transfer (CRET) detection of genes and microRNAs using dye-loaded hemin/G-quadruplex-modified UiO-66 metal–organic framework nanoparticles. Chem Sci. 2021;12:4810–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silver DP, Livingston DM. Mechanisms of BRCA1 tumor suppression. Cancer Discov. 2012;2:679–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Foulkes WD, Shuen AY. In brief: BRCA1 and BRCA2. J Pathol. 2013;230:347–9.
Article
PubMed
CAS
Google Scholar
Jin TY, Park KS, Nam SE, Yoo YB, Park WS, Yun IJ. BRCA1/2 serves as a biomarker for poor prognosis in breast carcinoma. Int J Mol Sci. 2022;23:3754.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimron S, Wang F, Orbach R, Willner I. Amplified detection of DNA through the enzyme-free autonomous assembly of hemin/G-quadruplex DNAzyme nanowires. AnaCh. 2012;84:1042–8.
CAS
Google Scholar
Wong CH, Chen YC. Clinical significance of exosomes as potential biomarkers in cancer. World J Clin Cases. 2019;7:171–90.
Article
PubMed
PubMed Central
Google Scholar
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Therapy. 2020;5:1–10.
CAS
Google Scholar
Qiao B, Guo Q, Jiang J, Qi Y, Zhang H, He B, et al. An electrochemiluminescent aptasensor for amplified detection of exosomes from breast tumor cells (MCF-7 cells) based on G-quadruplex/hemin DNAzymes. Analyst. 2019;144:3668–75.
Article
PubMed
CAS
Google Scholar
Jeong Y, Kook Y-M, Lee K, Koh W-G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron. 2018;111:102–16.
Article
PubMed
CAS
Google Scholar
Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: an overview. Int J Nano Dimension. 2019;10:1–17.
CAS
Google Scholar
Wang F, Elbaz J, Orbach R, Magen N, Willner I. Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J Am Chem Soc. 2011;133:17149–51.
Article
PubMed
CAS
Google Scholar
Wang G, Zhu Y, Chen L, Zhang X. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens Bioelectron. 2015;63:552–7.
Article
PubMed
CAS
Google Scholar
Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. ChSRv. 2012;41:2849–66.
CAS
Google Scholar
Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sens Int. 2020;1:100040.
Article
Google Scholar
Lakshmipriya T, Gopinath SCB. An introduction to biosensors and biomolecules. In: Gopinath SCB, Lakshmipriya T, editors. Nanobiosensors for biomolecular targeting. Elsevier; 2019. p. 1–21.
Google Scholar
Hong L, Zhou F, Shi D, Zhang X, Wang G. Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron. 2017;95:152–9.
Article
PubMed
CAS
Google Scholar
Shahbazi N, Hosseinkhani S, Ranjbar B. A facile and rapid aptasensor based on split peroxidase DNAzyme for visual detection of carcinoembryonic antigen in saliva. Sens Actuators B: Chem. 2017;253:794–803.
Article
CAS
Google Scholar
Fini ME, Jeong S, Gong H, Martinez-Carrasco R, Laver NM, Hijikata M, et al. Membrane-associated mucins of the ocular surface: new genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res. 2020;75:100777.
Article
PubMed
CAS
Google Scholar
Nosrati R, Abnous K, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep. 2021;11:13065.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–57.
Article
PubMed
CAS
Google Scholar
Kato K, Lillehoj EP, Lu W, Kim KC. MUC1: the first respiratory mucin with an anti-inflammatory function. J Clin Med. 2017;6:110.
Article
PubMed Central
CAS
Google Scholar
Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38:223–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu S, Xu N, Tan C, Fang W, Tan Y, Jiang Y. A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Anal Chim Acta. 2018;1018:86–93.
Article
PubMed
CAS
Google Scholar
Zhang H, Peng L, Li M, Ma J, Qi S, Chen H, et al. A label-free colorimetric biosensor for sensitive detection of vascular endothelial growth factor-165. Analyst. 2017;142:2419–25.
Article
PubMed
CAS
Google Scholar
Jančík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010: 150960
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu H, Wu D, Li CQ, Lu Z, Liao XY, Huang J, et al. Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron. 2017;90:314–20.
Article
PubMed
CAS
Google Scholar
Liang D, You W, Yu Y, Geng Y, Lv F, Zhang B. A cascade signal amplification strategy for ultrasensitive colorimetric detection of BRCA1 gene. RSC Adv. 2015;5:27571–5.
Article
CAS
Google Scholar
Liu M, Ma W, Li Q, Zhao D, Shao X, Huang Q, et al. Aptamer-targeted DNA nanostructures with doxorubicin to treat protein tyrosine kinase 7‐positive tumours. Cell Prolif. 2019;52:e12511.
Article
PubMed
CAS
Google Scholar
Zhu X, Cao Y, Liang Z, Li G. Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells. Protein Cell. 2010;1:842–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang S, Garcia-D’Angeli A, Brennan JP, Huo Q. Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst. 2014;139:439–45.
Article
PubMed
CAS
Google Scholar
Solier C, Langen H. Antibody-based proteomics and biomarker research: current status and limitations. Proteomics. 2014;14:774–83.
Article
PubMed
CAS
Google Scholar
Byrne B, Stack E, Gilmartin N, O’Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9:4407–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yousefi M, Dehghani S, Nosrati R, Zare H, Evazalipour M, Mosafer J, et al. Aptasensors as a new sensing technology developed for the detection of MUC1 mucin: a review. Biosens Bioelectron. 2019;130:1–19.
Article
PubMed
CAS
Google Scholar
Oguzhan Caglayan M. Electrochemical aptasensors for early cancer diagnosis: a review. Curr Anal Chem. 2017;13:18–30.
Article
CAS
Google Scholar
Nur Topkaya S, Cetin AE. Electrochemical aptasensors for biological and chemical analyte detection. Electroanalysis. 2021;33:277–91.
Article
CAS
Google Scholar
Shekari Z, Zare HR, Falahati A. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchimica Acta. 2019;186:1–11.
Article
CAS
Google Scholar
Huang R, He L, Xia Y, Xu H, Liu C, Xie H, et al. A sensitive aptasensor based on a hemin/G-Quadruplex-assisted signal amplification strategy for electrochemical detection of gastric cancer exosomes. Small. 2019;15(19):1900735.
Article
CAS
Google Scholar
Ou D, Sun D, Liang Z, Chen B, Lin X, Chen Z. A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sens Actuators B: Chem. 2019;285:398–404.
Article
CAS
Google Scholar
Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20:471–80.
Article
PubMed
CAS
Google Scholar
Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56.
Article
PubMed
CAS
Google Scholar
Vieler M, Sanyal S. p53 isoforms and their implications in cancer. Cancers (Basel). 2018;10:288.
Article
CAS
Google Scholar
Zhao L, Sanyal S. p53 isoforms as cancer biomarkers and therapeutic targets. Cancers (Basel). 2022;14:3145.
Article
CAS
Google Scholar
Wang Z, Xia J, Song D, Zhang F, Yang M, Gui R, et al. Lable-free quadruple signal amplification strategy for sensitive electrochemical p53 gene biosensing. Biosens Bioelectron. 2016;77:157–63.
Article
PubMed
CAS
Google Scholar
Meng L, Yang L, Zhao X, Zhang L, Zhu H, Liu C, et al. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS ONE. 2012;7:e33434.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun D, Lu J, Chen Z, Yu Y, Mo M. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Anal Chim Acta. 2015;885:166–73.
Article
PubMed
CAS
Google Scholar
Sun D, Lu J, Wang X, Zhang Y, Chen Z. Voltammetric aptamer based detection of HepG2 tumor cells by using an indium tin oxide electrode array and multifunctional nanoprobes. Microchim Acta. 2017;184:3487–96.
Article
CAS
Google Scholar
Sun D, Lu J, Chen D, Jiang Y, Wang Z, Qin W, et al. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sens Actuators B: Chem. 2018;268:359–67.
Article
CAS
Google Scholar
Chen D, Sun D, Wang Z, Qin W, Chen L, Zhou L, et al. A DNA nanostructured aptasensor for the sensitive electrochemical detection of HepG2 cells based on multibranched hybridization chain reaction amplification strategy. Biosens Bioelectron. 2018;117:416–21.
Article
PubMed
CAS
Google Scholar
Lu CY, Xu JJ, Wang ZH, Chen HY. A novel signal-amplified electrochemical aptasensor based on supersandwich G-quadruplex DNAzyme for highly sensitive cancer cell detection. Electrochem Commun. 2015;52:49–52.
Article
CAS
Google Scholar
Dehghani S, Nosrati R, Yousefi M, Nezami A, Soltani F, Taghdisi SM, et al. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review. Biosens Bioelectron. 2018;110:23–37.
Article
PubMed
CAS
Google Scholar
Li X, Ding X, Fan J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst. 2015;140:7918–25.
Article
PubMed
CAS
Google Scholar
Amri C, Shukla AK, Lee J-H. Recent advancements in nanoparticle-based optical biosensors for circulating cancer biomarkers. Materials. 2021;14:1339.
Article
PubMed
PubMed Central
CAS
Google Scholar
da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola, de Moraes J, Kubota ACM. LT. Electrochemical biosensors in point-of‐care devices: recent advances and future trends. ChemElectroChem. 2017;4:778–94.
Article
CAS
Google Scholar
Perumal V, Hashim U. Advances in biosensors: principle, architecture and applications. J Appl Biomed. 2014;12:1–15.
Article
Google Scholar
Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc. 2007;129:1042–3.
Article
PubMed
CAS
Google Scholar
Saei AA, Dolatabadi JEN, Najafi-Marandi P, Abhari A, de la Guardia M. Electrochemical biosensors for glucose based on metal nanoparticles. Trends Anal Chem. 2013;42:216–27.
Article
CAS
Google Scholar