Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/micromotors for diagnosis and therapy of cancer and infectious diseases. Chem Eur J. 2020;26:2309–26.
Article
CAS
Google Scholar
Schiffman JD, Fisher PG, Gibbs P. Early Detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book. 2015;35:57–65.
Article
Google Scholar
Delgado-Viscogliosi P, Solignac L, Delattre J-M. Viability PCR, a culture-independent method for rapid and selective quantification of viable Legionella pneumonia cells in environmental water samples. Appl Environ Microb. 2009;75:3502.
Article
CAS
Google Scholar
Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC. New and developing diagnostic technologies for urinary tract infections. Nat Rev Urol. 2017;14:296–310.
Article
Google Scholar
Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev. 2017;46:3945–61.
Article
CAS
Google Scholar
Li X, Ye S, Luo X. Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification. Chem Commun. 2016;52:10269–72.
Article
CAS
Google Scholar
Demirel G, Usta H, Yilmaz M, Celik M, Alidagi HA, Buyukserin F. Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. J Mater Chem C. 2018;6:5314–35.
Article
CAS
Google Scholar
Kneipp K, Ozaki Y, Tian ZQ. Recent developments in plasmon-supported Raman spectroscopy. World Scientific (Europe). London; 2017.
Fateixa S, Nogueira HIS, Trindade T. Hybrid nanostructures for SERS: materials development and chemical detection. Phys Chem Phys. 2015;17:21046–71.
Article
CAS
Google Scholar
Guo H, He L, Xing B. Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ Sci Nano. 2017;4:2093–107.
Article
CAS
Google Scholar
Ren X, Cheshari EC, Qi J, Li X. Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Microchim Acta. 2018;185:242.
Article
Google Scholar
Bi L, Wang Y, Yang Y, Li Y, Mo S, Zheng Q, et al. Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform. ACS Appl Mater Interfaces. 2018;10:15381–7.
Article
CAS
Google Scholar
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, et al. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials. 2018;181:140–81.
Article
CAS
Google Scholar
Hong Y, Zhou X, Xu B, Huang Y, He W, Wang S, et al. Optoplasmonic hybrid Materials for trace detection of methamphetamine in biological fluids through SERS. ACS Appl Mater Interfaces. 2020;12:24192–200.
Article
CAS
Google Scholar
Shen J, Zhou Y, Huang J, Zhu Y, Zhu J, Yang X, et al. In-situ SERS monitoring of reaction catalyzed by multifunctional Fe3O4@TiO2@Ag-Au microspheres. Appl Catal B: Environ. 2017;205:11–8.
Article
CAS
Google Scholar
Wang X, Du Y, Zhang H, Xu Y, Pan Y, Wu T, et al. Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate–ethylene dimethacrylate material. Food Control. 2014;46:108–14.
Article
CAS
Google Scholar
Smith WE. Practical understanding and use of surface-enhanced Raman scattering/surface-enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev. 2008;37:955–64.
Article
CAS
Google Scholar
Moore TAO, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma BAO. In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors. 2018;8:2079–6374.
Article
Google Scholar
Sinha SS, Jones S, Pramanik A, Ray PC. Nanoarchitecture-based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc Chem Res. 2016;49:2725–35.
Article
CAS
Google Scholar
Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron. 2010;26:398–403.
Article
CAS
Google Scholar
Vendrell M, Maiti KK, Dhaliwal K, Chang Y-T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31:249–57.
Article
CAS
Google Scholar
Wu X, Luo L, Yang S, Ma X, Li Y, Dong C, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl Mater Interfaces. 2015;7:9965–71.
Article
CAS
Google Scholar
Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46:4042–76.
Article
CAS
Google Scholar
Liu B, Thielert B, Reutter A, Stosch R, Lemmens P. Quantifying the contribution of chemical enhancement to SERS: A model based on the analysis of light-induced degradation processes. J Phys Chem C. 2019;123:19119–24.
Article
CAS
Google Scholar
Fan W, Yue-E M, Ling X, Liu T. Free-standing silver nanocube/graphene oxide hybrid paper for surface-enhanced Raman scattering. Chin J Chem. 2016;34:73–81.
Article
CAS
Google Scholar
Li X, Li J, Zhou X, Ma Y, Zheng Z, Duan X, et al. Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface-enhanced Raman spectroscopy. Carbon. 2014;66:713–9.
Article
CAS
Google Scholar
Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev. 2017;46:1272–83.
Article
CAS
Google Scholar
Qiu Y, Deng D, Deng Q, Wu P, Zhang H, Cai C. Synthesis of magnetic Fe3O4–Au hybrids for sensitive SERS detection of cancer cells at low abundance. J Mater Chem B. 2015;3:4487–95.
Article
CAS
Google Scholar
Auner GW, Koya SK, Huang C, Broadbent B, Trexler M, Auner Z, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metast Rev. 2018;37:691–717.
Article
CAS
Google Scholar
Geen KG, Kumar D, Subrahmanyam S, Shanmugam K. Raman fingerprints in detection of breast cancer. J Biosens Biomark Diagnos. 2016;1:1–11.
Google Scholar
Han XX, Ozaki Y, Zhao B. Label-free detection in biological applications of surface-enhanced Raman scattering. Trends Anal Chem. 2012;38:67–78.
Article
CAS
Google Scholar
Gahlaut SK, Savargaonkar D, Sharan C, Yadav S, Mishra P, Singh JP. SERS platform for dengue diagnosis from clinical samples employing a handheld Raman spectrometer. Anal Chem. 2020;92:2527–34.
Article
CAS
Google Scholar
Wu L, Wang Z, Zhang Y, Fei J, Chen H, Zong S, et al. In situ probing of cell-cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs. Nano Res. 2017;10:584–94.
Article
CAS
Google Scholar
Bodelón G, Montes-García V, López-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN, et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater. 2016;15:1203–11.
Article
Google Scholar
Cao X, Wang Z, Bi L, Zheng J. Label-free detection of human serum using surface-enhanced Raman spectroscopy based on highly branched gold nanoparticle substrates for discrimination of non-small cell lung cancer. J Chem. 2018;2018:9012645.
Article
Google Scholar
González-Solís J, Luévano Colmenero G, Vargas-Mancilla J. Surface enhanced Raman spectroscopy in breast cancer cells. Laser Ther. 2013;22:37–42.
Article
Google Scholar
Cui S, Zhang S, Yue S. Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng. 2018;2018:8619342.
Article
Google Scholar
Nguyen BH, Nguyen VH, Tran HN. Rich variety of substrates for surface-enhanced Raman spectroscopy. Adv Nat Sci Nanosci. 2016;7: 033001.
Article
Google Scholar
Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, et al. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS activity. Langmuir. 2003;19:4285–90.
Article
CAS
Google Scholar
dos Santos JDS, Alvarez-Puebla RA, Oliveira JON, Aroca RF. Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS. J Mater Chem. 2005;15:3045–9.
Article
Google Scholar
Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials. 2016;106:87–97.
Article
CAS
Google Scholar
Song C, Yang B, Zhu Y, Yang Y, Wang L. Ultrasensitive silver nanorod array SERS sensor for mercury ions. Biosens Bioelectron. 2017;87:59–65.
Article
CAS
Google Scholar
Kim DJ, Jeon TY, Park S-G, Han HJ, Im SH, Kim D-H, et al. Uniform microgels containing agglomerates of silver nanocubes for molecular size-selectivity and high SERS activity. Small. 2017;13:1604048.
Article
Google Scholar
Yan T, Zhang L, Jiang T, Bai Z, Yu X, Dai P, et al. Controllable SERS performance for the flexible paper-like films of reduced graphene oxide. Appl Surf Sci. 2017;419:373–81.
Article
CAS
Google Scholar
Shen Y, Miao P, Hu C, Wu J, Gao M, Xu P. SERS-based plasmon-driven reaction and molecule detection on a single Ag@MoS2 microsphere: Effect of thickness and crystallinity of MoS2. ChemCatChem. 2018;10:3520–5.
Article
CAS
Google Scholar
Jiang R, Li B, Fang C, Wang J. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv Mater. 2014;26:5274–309.
Article
CAS
Google Scholar
He L, Liu C, Hu J, Gu W, Zhang Y, Dong L, et al. Hydrophobic ligand-mediated hierarchical Cu nanoparticles on reduced graphene oxides for SERS platform. CrystEngComm. 2016;18:7764–71.
Article
CAS
Google Scholar
Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, et al. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale. 2015;7:20188–96.
Article
CAS
Google Scholar
Wei H, Leng W, Song J, Willner MR, Marr LC, Zhou W, et al. Improved quantitative SERS enabled by surface plasmon enhanced elastic light scattering. Anal Chem. 2018;90:3227–37.
Article
CAS
Google Scholar
Fu HY, Lang XY, Hou C, Wen Z, Zhu YF, Zhao M, et al. Nanoporous Au/SnO/Ag heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. J Mater Chem C. 2014;2:7216–22.
Article
CAS
Google Scholar
Wu LA, Li WE, Lin DZ, Chen YF. Three-dimensional SERS substrates formed with plasmonic core-satellite nanostructures. Sci Rep. 2017;7:13066.
Article
Google Scholar
Shi R, Liu X, Ying Y. Facing challenges in real-life application of surface-enhanced Raman scattering: Design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J Agr Food Chem. 2018;66:6525–43.
Article
CAS
Google Scholar
Lee HK, Lee YH, Koh CSL, Phan-Quang GC, Han X, Lay CL, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev. 2019;48:731–56.
Article
CAS
Google Scholar
Wu L, Wang W, Zhang W, Su H, Liu Q, Gu J, et al. Highly sensitive, reproducible and uniform SERS substrates with a high density of three-dimensionally distributed hotspots: gyroid-structured Au periodic metallic materials. NPG Asia Mater. 2018;10:e462–562.
Article
CAS
Google Scholar
Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater. 2002;14:1857–60.
Article
CAS
Google Scholar
Bhushan B. Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol. 2007;21:1213–58.
Article
CAS
Google Scholar
Biró LP, Kertész K, Vértesy Z, Márk GI, Bálint Z, Lousse V, et al. Living photonic crystals: Butterfly scales - nanostructure and optical properties. Mat Sci Eng C-Mater. 2007;27:941–6.
Article
Google Scholar
Garrett NL, Sekine R, Dixon MWA, Tilley L, Bambery KR, Wood BR. Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys. 2015;17:21164–8.
Article
CAS
Google Scholar
Zhang M, Meng J, Wang D, Tang Q, Chen T, Rong S, et al. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J Mater Chem C. 2018;6:1933–43.
Article
CAS
Google Scholar
Fabric L. SERS Tags: The next promising tool for personalized cancer detection? ChemNanoMat. 2016;2:249–58.
Article
Google Scholar
Guo M, Dong J, Xie W, Tao L, Lu W, Wang Y, et al. SERS tags-based novel monodispersed hollow gold nanospheres for highly sensitive immunoassay of CEA. J Mater Sci. 2015;50:3329–36.
Article
CAS
Google Scholar
Chen M, Zhang L, Gao M, Zhang X. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Talanta. 2017;172:176–81.
Article
CAS
Google Scholar
Pérez-Jiménez AI, Lyu D, Lu Z, Liu G, Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci. 2020;11:4563–77.
Article
Google Scholar
Scatena E, Baiguera S, Del Gaudio C. Raman spectroscopy and aptamers for a label-free approach: Diagnostic and application tools. J Healthc Eng. 2019;2019:2815789.
Article
Google Scholar
Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliver Rev. 2015;89:105–20.
Article
CAS
Google Scholar
Rinken T, Kivirand K. Biosensing technologies for the detection of pathogens: A prospective way for rapid analysis. IntechOpen: Croatia; 2018.
Book
Google Scholar
Zhang J, Ma X, Wang Z. Real-time and in-situ monitoring of Abrin induced cell apoptosis by using SERS spectroscopy. Talanta. 2019;195:8–16.
Article
CAS
Google Scholar
Zheng X-S, Jahn IJ, Weber K, Cialla-May D, Popp J. Label-free SERS in biological and biomedical applications: Recent progress, current challenges, and opportunities. Spectrochim Acta A. 2018;197:56–77.
Article
CAS
Google Scholar
Guo J, Liu Y, Chen Y, Li J, Ju H. A multifunctional SERS sticky note for real-time quorum sensing tracing and inactivation of bacterial biofilms. Chem Sci. 2018;9:5906–11.
Article
CAS
Google Scholar
Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson J-F. Dynamic-SERS optophysiology: A nanosensor for monitoring cell secretion events. Nano Lett. 2016;16:3866–71.
Article
CAS
Google Scholar
Cabello G, Nwoko KC, Marco JF, Sánchez-Arenillas M, Méndez-Torres AM, Feldmann J, et al. Cu@Au self-assembled nanoparticles as SERS-active substrates for (bio)molecular sensing. J Alloy Compd. 2019;791:184–92.
Article
CAS
Google Scholar
Majumdar D, Singha A, Mondal PK, Kundu S. DNA-mediated wirelike clusters of silver nanoparticles: An ultrasensitive SERS substrate. ACS Appl Mater Interfaces. 2013;5:7798–807.
Article
CAS
Google Scholar
Khlebtsov B, Khanadeev V, Khlebtsov N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016;9:2303–18.
Article
CAS
Google Scholar
Gao Z, Burrows ND, Valley NA, Schatz GC, Murphy CJ, Haynes CL. In solution SERS sensing using mesoporous silica-coated gold nanorods. Analyst. 2016;141:5088–95.
Article
CAS
Google Scholar
Garcia-Leis A, Garcia-Ramos JV, Sanchez-Cortes S. Silver nanostars with high SERS performance. J Phys Chem C. 2013;117:7791–5.
Article
CAS
Google Scholar
Niu W, Chua YAA, Zhang W, Huang H, Lu X. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc. 2015;137:10460–3.
Article
CAS
Google Scholar
Jiang B, Xu L, Chen W, Zou C, Yang Y, Fu Y, et al. Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface-enhanced Raman scattering (SERS). Nano Res. 2017;10:3509–21.
Article
CAS
Google Scholar
Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale. 2017;9:16459–66.
Article
CAS
Google Scholar
Wang P, Pang S, Chen J, McLandsborough L, Nugen SR, Fan M, et al. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst. 2016;141:1356–62.
Article
CAS
Google Scholar
Reyes M, Piotrowski M, Ang SK, Chan J, He S, Chu JJH, et al. Exploiting the anti-aggregation of gold nanostars for rapid detection of hand, foot, and mouth disease causing enterovirus 71 using surface-enhanced Raman spectroscopy. Anal Chem. 2017;89:5373–81.
Article
CAS
Google Scholar
Von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater. 2009;21:3175–80.
Article
Google Scholar
Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, et al. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35:3309–18.
Article
CAS
Google Scholar
Gao Y, Li Y, Wang Y, Chen Y, Gu J, Zhao W, et al. Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. Small. 2015;11:77–83.
Article
CAS
Google Scholar
Chen J, Sheng Z, Li P, Wu M, Zhang N, Yu XF, et al. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale. 2017;9:11888–901.
Article
CAS
Google Scholar
Qi G, Zhang Y, Xu S, Li C, Wang D, Li H, et al. Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced Raman spectroscopy nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal cells. Anal Chem. 2018;90:13356–64.
Article
CAS
Google Scholar
Xing Y, Cai Z, Xu M, Ju W, Luo X, Hu Y, et al. Raman observation of a molecular signaling pathway of apoptotic cells induced by photothermal therapy. Chem Sci. 2019;10:10900–10.
Article
CAS
Google Scholar
Ali MRK, Wu Y, Han T, Zang X, Xiao H, Tang Y, et al. Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy. J Am Chem Soc. 2016;138:15434–42.
Article
CAS
Google Scholar
Gao W, Li B, Yao R, Li Z, Wang X, Dong X, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ silver nanoparticles synthesis. Anal Chem. 2017;89:9836–42.
Article
CAS
Google Scholar
Wang J, Koo KM, Wee EJH, Wang Y, Trau M. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale. 2017;9:3496–503.
Article
CAS
Google Scholar
Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM. Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta. 2017;184:219–27.
Article
CAS
Google Scholar
Koo KM, Wang J, Richards RS, Farrell A, Yaxley JW, Samaratunga H, et al. Design and clinical verification of surface-enhanced Raman spectroscopy diagnostic technology for individual cancer risk prediction. ACS Nano. 2018;12:8362–71.
Article
CAS
Google Scholar
Hong Y, Li Y, Huang L, He W, Wang S, Wang C, et al. Label-free diagnosis for colorectal cancer through coffee ring-assisted surface-enhanced Raman spectroscopy on blood serum. J Biophotonics. 2020;13: e201960176.
Article
CAS
Google Scholar
He S, Kyaw YME, Tan EKM, Bekale L, Kang MWC, Kim SSY, et al. Quantitative and label-free detection of protein kinase A activity based on surface-enhanced Raman spectroscopy with gold nanostars. Anal Chem. 2018;90:6071–80.
Article
CAS
Google Scholar
Prakash O, Sil S, Verma T, Umapathy S. Direct detection of bacteria using positively charged Ag/Au bimetallic nanoparticles: A label-free surface-enhanced Raman scattering study coupled with multivariate analysis. J Phys Chem C. 2020;124:861–9.
Article
CAS
Google Scholar
Wang C, Wang J, Li M, Qu X, Zhang K, Rong Z, et al. A rapid SERS method for label-free bacteria detection using polyethyleneimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst. 2016;141:6226–38.
Article
CAS
Google Scholar
Fraire JC, Stremersch S, Bouckaert D, Monteyne T, De Beer T, Wuytens P, et al. Improved label-free identification of individual exosome-like vesicles with Au@Ag nanoparticles as SERS substrate. ACS Appl Mater Interfaces. 2019;11:39424–35.
Article
CAS
Google Scholar
Karthick Kannan P, Shankar P, Blackman C, Chung CH. Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv Mater. 2019;31:1803432.
Article
Google Scholar
Kim YK, Kim S, Cho S-P, Jang H, Huh H, Hong BH, et al. Facile one-pot photosynthesis of stable Ag@graphene oxide nanocolloid core@shell nanoparticles with sustainable localized surface plasmon resonance properties. J Mater Chem C. 2017;5:10016–22.
Article
CAS
Google Scholar
Zeng F, Xu D, Zhan C, Liang C, Zhao W, Zhang J, et al. Surfactant-free synthesis of graphene oxide coated silver nanoparticles for SERS biosensing and intracellular drug delivery. ACS Appl Nano Mater. 2018;1:2748–53.
Article
CAS
Google Scholar
Zhou Y, Huang J, Shi W, Li Y, Wu Y, Liu Q, et al. Ecofriendly and environment-friendly synthesis of size-controlled silver nanoparticles/graphene composites for antimicrobial and SERS actions. Appl Surf Sci. 2018;457:1000–8.
Article
CAS
Google Scholar
Meng X, Wang H, Chen N, Ding P, Shi H, Zhai X, et al. A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal Chem. 2018;90:5646–53.
Article
CAS
Google Scholar
Huang D, Zhuang Z, Wang Z, Li S, Zhong H, Liu Z, et al. Black phosphorus-Au filter paper-based three-dimensional SERS substrate for rapid detection of foodborne bacteria. Appl Surf Sci. 2019;497: 143825.
Article
CAS
Google Scholar
Henan Z, Wen Z, Zhiming L, Deqiu H, Wolun Z, Binggang Y, et al. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics. 2018;7:1651–62.
Article
Google Scholar
Yang G, Liu Z, Li Y, Hou Y, Fei X, Su C, et al. Facile synthesis of black phosphorus–Au nanocomposites for enhanced photothermal cancer therapy and surface-enhanced Raman scattering analysis. Biomater Sci. 2017;5:2048–55.
Article
CAS
Google Scholar
Li D, Yu H, Guo Z, Li S, Li Y, Guo Y, et al. SERS analysis of carcinoma-associated fibroblasts in a tumor microenvironment based on targeted 2D nanosheets. Nanoscale. 2020;12:2133–41.
Article
Google Scholar
Wang J, Liu R, Zhang C, Han G, Zhao J, Liu B, et al. Synthesis of g-C3N4 nanosheet/Au@Ag nanoparticle hybrids as SERS probes for cancer cell diagnostics. RSC Adv. 2015;5:86803–10.
Article
CAS
Google Scholar
Wang YN, Zhang Y, Zhang WS, Xu ZR. A SERS substrate of mesoporous g-C3N4 embedded with in situ grown gold nanoparticles for sensitive detection of 6-thioguanine. Sensors Actuat B Chem. 2018;260:400–7.
Article
CAS
Google Scholar
Zhang H, Zhang W, Gao X, Man P, Sun Y, Liu C, et al. Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application. Sensors Actuat B Chem. 2019;282:809–17.
Article
CAS
Google Scholar
Liu J, Zheng T, Tian Y. Functionalized h-BN nanosheets as a theranostic platform for SERS real-time monitoring of microRNA and photodynamic therapy. Angew Chem Int Ed. 2019;58:7757–61.
Article
CAS
Google Scholar
Pramanik A, Davis D, Patibandla S, Begum S, Ray P, Gates K, et al. A WS2-gold nanoparticle heterostructure-based novel SERS platform for the rapid identification of antibiotic-resistant pathogens. Nanoscale Adv. 2020;2:2025–33.
Article
CAS
Google Scholar
Kavyani S, Dadvar M, Modarress H, Amjad-Iranagh S. Molecular perspective mechanism for drug loading on carbon nanotube–dendrimer: A coarse-grained molecular dynamics study. J Phys Chem B. 2018;122:7956–69.
Article
CAS
Google Scholar
Dinda S, Mandal D, Sarkar S, Das PK. Self-assembled vesicle–carbon nanotube conjugate formation through a boronate–diol covalent linkage. Chem Eur J. 2017;23:15194–202.
Article
CAS
Google Scholar
Liu H, Li Y, Dykes J, Gilliam T, Burnham K, Chopra N. Manipulating the functionalization surface of graphene-encapsulated gold nanoparticles with single-walled carbon nanotubes for SERS sensing. Carbon. 2018;140:306–13.
Article
CAS
Google Scholar
Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon. 2019;141:467–80.
Article
CAS
Google Scholar
Gupta S, Murthy CN, Prabha CR. Recent advances in carbon nanotube-based electrochemical biosensors. Int J Biol Macromol. 2018;108:687–703.
Article
CAS
Google Scholar
Rong G, Corrie SR, Clark HA. In vivo biosensing: Progress and perspectives. ACS Sens. 2017;2:327–38.
Article
CAS
Google Scholar
Chen Y-C, Young RJ, Macpherson JV, Wilson NR. Silver-decorated carbon nanotube networks as SERS substrates. J Raman Spectrosc. 2011;42:1255–62.
Article
CAS
Google Scholar
Qin X, Si Y, Wang D, Wu Z, Li J, Yin Y. Nanoconjugates of Ag/Au/carbon nanotube for alkyne-meditated ratiometric SERS imaging of hypoxia in hepatic ischemia. Anal Chem. 2019;91(7):4529–36.
Article
CAS
Google Scholar
Jie Z, Zenghe Y, Xiaolei Z, Yong Z. Quantitative SERS by electromagnetic enhancement normalization with carbon nanotube as an internal standard. Opt Express. 2018;26:23534–9.
Article
CAS
Google Scholar
Teresa D, Rajashekhar K, Zhen F, Anant K-S, Dulal S, Madan D, Eugene Z, Paresh C-R. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid. Analyst. 2012;137:5041–5.
Article
Google Scholar
Wei H-N, Peng Z-S, Yang C, Tian Y, Sun L-F, Wang G-T, Liu M. Three-dimensional Au/Ag nanoparticle/crossed carbon nanotube SERS substrate for the detection of mixed toxic molecules. Nanomaterials. 2021;11:2026.
Article
CAS
Google Scholar
Cheng H, Zhao Y, Fan Y, Xie X, Qu L, Shi G. Graphene-quantum-dot assembled nanotubes: A new platform for efficient Raman enhancement. ACS Nano. 2012;6:2237–44.
Article
CAS
Google Scholar
Liu D, Chen X, Hu Y, Sun T, Song Z, Zheng Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun. 2018;9:193.
Article
Google Scholar
Bhunia SK, Zeiri L, Manna J, Nandi S, Jelinek R. Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl Mater Interfaces. 2016;8:25637–43.
Article
CAS
Google Scholar
Fei X, Liu Z, Hou Y, Li Y, Yang G, Su C, et al. Synthesis of Au NP@MoS2 quantum dots core@shell nanocomposites for SERS bio-analysis and label-free bio-imaging. Materials. 2017;10:650.
Article
Google Scholar
Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, Fabris L. A review on surface-enhanced Raman scattering. Biosens. 2019;9:57.
Article
CAS
Google Scholar
Zhao X, Li M, Xu Z. Detection of foodborne pathogens by surface-enhanced Raman spectroscopy. Front Microbiol. 2018;9:1236.
Article
Google Scholar
Li J, Dong S, Tong J, Zhu P, Diao G, Yang Z. 3D ordered silver nanoshells silica photonic crystal beads for multiplex encoded SERS bioassay. Chem Commun. 2016;52:284–7.
Article
CAS
Google Scholar
Cho WJ, Kim Y, Kim JK. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano. 2012;6:249–55.
Article
CAS
Google Scholar
Lee SY, Kim SH, Kim MP, Jeon HC, Kang H, Kim HJ, et al. Freestanding and arrayed nanoporous microcylinders for highly active 3D SERS substrate. Chem Mater. 2013;25:2421–6.
Article
CAS
Google Scholar
Xie X, Pu H, Sun DW. Recent advances in nanofabrication techniques for SERS substrates and their applications in the food safety analysis. Crit Rev Food Sci Nutr. 2018;58:2800–13.
Article
CAS
Google Scholar
Lao Z, Hu Y, Wu D. Fabricating nanogap for SERS by combing laser printing with capillary-force self-assembly on soft base. OSA Technical Digest (Optica Publishing Group, 2019). Hawaii United States; 2019. paper NTu4A.8.
Fan M, Andrade GFS, Brolo AG. A review on the fabrication of substrates for surface-enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693:7–25.
Article
CAS
Google Scholar
Jiao T, Yan X, Balan L, Stepanov AL, Chen X, Hu MZ. Chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. J Nanomater. 2014;2014: 291013.
Article
Google Scholar
Zhao X, Wen J, Zhang M, Wang D, Wang Y, Chen L, et al. Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography. ACS Appl Mater Interfaces. 2017;9:7710–6.
Article
CAS
Google Scholar
Fang X, Zheng C, Yin Z, Wang Z, Wang J, Liu J, et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Appl Mater Interfaces. 2020;12:12345–52.
Article
Google Scholar
Petti L, Capasso R, Rippa M, Pannico M, La Manna P, Peluso G, et al. A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vib Spectrosc. 2016;82:22–30.
Article
CAS
Google Scholar
Hasna K, Antony A, Puigdollers J, Kumar KR, Jayaraj MK. Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface-enhanced Raman scattering substrates. Nano Res. 2016;9:3075–83.
Article
CAS
Google Scholar
Liu TY, Tsai K-T, Wang H-H, Chen Y, Chen Y-H, Chao Y-C, et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat Commun. 2011;2:538.
Article
Google Scholar
Im H, Bantz KC, Lee SH, Johnson TW, Haynes CL, Oh S-H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv Mater. 2013;25:2678–85.
Article
CAS
Google Scholar
Rippa M, Castagna R, Pannico M, Musto P, Borriello G, Paradiso R, et al. Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering. ACS Sens. 2017;2:947–54.
Article
CAS
Google Scholar
Kumar S, Lodhi DK, Goel P, Neeti P, Mishra P, Singh JP. A facile method for fabrication of buckled PDMS silver nanorod arrays as active 3D SERS cages for bacterial sensing. Chem Commun. 2015;51:12411–4.
Article
CAS
Google Scholar
Paccotti N, Boschetto F, Horiguchi S, Marin E, Chiadò A, Novara C, et al. Label-free SERS discrimination and in situ analysis of life cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors. 2018;8:131.
Article
CAS
Google Scholar
Zhang Y, Zeng Q, Li L, Qi M, Qi Q, Li S, et al. Characterization and identification of lung cancer cells from blood cells with label-free surface-enhanced Raman scattering. Laser Phys. 2019;29: 045602.
Article
CAS
Google Scholar
Shanmukh S, Jones L, Driskell J, Zhao Y, Dluhy R, Tripp RA. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 2006;6:2630–6.
Article
CAS
Google Scholar
Kahraman M, Wachsmann-Hogiu S. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering. Anal Chim Acta. 2015;856:74–81.
Article
CAS
Google Scholar
Guselnikova O, Postnikov P, Pershina A, Svorcik V, Lyutakov O. Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating. Appl Surf Sci. 2019;470:219–27.
Article
CAS
Google Scholar
Zhang B, Wang H, Lu L, Ai K, Zhang G, Cheng X. Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy. Adv Funct Mater. 2008;18:2348–55.
Article
CAS
Google Scholar
Nam W, Ren X, Tali SAS, Ghassemi P, Kim I, Agah M, et al. Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells. Nano Lett. 2019;19:7273–81.
Article
CAS
Google Scholar
Plou J, García I, Charconnet M, Astobiza I, García-Astrain C, Matricardi C, et al. Multiplex SERS detection of metabolic alterations in tumor extracellular media. Adv Funct Mater. 2020;30:1910335.
Article
CAS
Google Scholar
Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotech. 2011;2:152–61.
Article
CAS
Google Scholar
Feng L, Zhang Y, Li M, Zheng Y, Shen W, Jiang L. The structural color of red rose petals and their duplicates. Langmuir. 2010;26:14885–8.
Article
CAS
Google Scholar
Vértesy Z, Bálint Z, Kertész K, Vigneron JP, Lousse V, Biró LP. Wing scale microstructures and nanostructures in butterflies − natural photonic crystals. J Microsc. 2006;224:108–10.
Article
Google Scholar
Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, et al. Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci. 2002;99:12252.
Article
CAS
Google Scholar
Huang J-A, Zhang Y-L, Zhao Y, Zhang X-L, Sun M-L, Zhang W. Superhydrophobic SERS chip based on an Ag coated natural taro-leaf. Nanoscale. 2016;8:11487–93.
Article
CAS
Google Scholar
Chou S-Y, Yu C-C, Yen Y-T, Lin K-T, Chen H-L, Su W-F. Romantic story or Raman scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced Raman scattering. Anal Chem. 2015;87:6017–24.
Article
CAS
Google Scholar
Shao F, Lu Z, Liu C, Han H, Chen K, Li W, et al. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing. ACS Appl Mater Interfaces. 2014;6:6281–9.
Article
CAS
Google Scholar
Tan Y, Gu J, Xu W, Chen Z, Liu D, Liu Q, et al. Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection. ACS Appl Mater Interfaces. 2013;5:9878–82.
Article
CAS
Google Scholar
Du J, Cui J, Jing C. Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem Commun. 2014;50:347–9.
Article
CAS
Google Scholar
Jiang X, Sang Q, Yang M, Du J, Wang W, Yang L, et al. Metal-free SERS substrate based on rGO–TiO2–Fe3O4 nanohybrid: contribution from interfacial charge transfer and magnetic controllability. Phys Chem Chem Phys. 2019;21:12850–8.
Article
CAS
Google Scholar
Huy LT, Tam LT, Van Son T, Cuong ND, Nam MH, Vinh LK, et al. Photochemical decoration of silver nanocrystals on magnetic MnFe2O4 nanoparticles and their applications in antibacterial agents and SERS-based detection. J Electron Mater. 2017;46:3412–21.
Article
CAS
Google Scholar
Yang X, He Y, Wang X, Yuan R. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+. Appl Surf Sci. 2017;416:581–6.
Article
CAS
Google Scholar
Ding Q, Ma Y, Ye Y, Yang L, Liu J. A simple method to prepare the magnetic Ni@Au core-shell nanostructure for the cycle surface-enhanced Raman scattering substrates. J Raman Spectrosc. 2013;44:987–93.
Article
CAS
Google Scholar
Xu X, Li H, Hasan D, Ruoff RS, Wang AX, Fan DL. Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater. 2013;23:4332–8.
Article
CAS
Google Scholar
Hardiansyah A, Chen A-Y, Liao H-L, Yang M-C, Liu T-Y, Chan T-Y, et al. Core-shell of FePt@SiO2-Au magnetic nanoparticles for rapid SERS detection. Nanoscale Res Lett. 2015;10:412.
Article
Google Scholar
Wang Y, Liu Q, Sun Y, Wang R. Magnetic field modulated SERS enhancement of CoPt hollow nanoparticles with sizes below 10 nm. Nanoscale. 2018;10:12650–6.
Article
CAS
Google Scholar
Choi JY, Kim K, Shin KS. Surface-enhanced Raman scattering is inducible by recyclable Ag-coated magnetic particles. Vib Spectrosc. 2010;53:117–20.
Article
CAS
Google Scholar
Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, et al. Popcorn-shaped magnetic core–plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chem Eur J. 2013;19:2839–47.
Article
CAS
Google Scholar
Wang C, Li P, Wang J, Rong Z, Pang Y, Xu J, et al. Polyethylenimine-interlayered core-shell–satellite 3D magnetic microspheres as versatile SERS substrates. Nanoscale. 2015;7:18694–707.
Article
CAS
Google Scholar
Han B, Choi N, Kim KH, Lim DW, Choo J. Application of silver-coated magnetic microspheres to a SERS-based optofluidic sensor. J Phys Chem C. 2011;115:6290–6.
Article
CAS
Google Scholar
Wang C, Wang J, Li P, Rong Z, Jia X, Ma Q, et al. Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates. Nanoscale. 2016;8:19816–28.
Article
CAS
Google Scholar
Yang T, Guo X, Wu Y, Wang H, Fu S, Wen Y, et al. Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interfaces. 2014;6:20985–93.
Article
CAS
Google Scholar
Zhang J, Gim S, Paris G, Dallabernardina P, Schmitt CNZ, Eickelmann S, et al. Ultrasonic-assisted synthesis of highly defined silver nanodimers by self-assembly for improved surface-enhanced Raman spectroscopy. Chem Eur J. 2020;26:1243–8.
Article
CAS
Google Scholar
Purbia R, Nayak PD, Paria S. Visible light-induced Ag nanoparticle deposited urchin-like structures for enhanced SERS application. Nanoscale. 2018;10:12970–4.
Article
CAS
Google Scholar
Han XX, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale. 2017;9:4847–61.
Article
CAS
Google Scholar
Keshavarz M, Tan B, Venkatakrishnan K. Label-free SERS quantum semiconductor probe for molecular-level and in vitro cellular detection: A noble-metal-free methodology. ACS Appl Mater Interface. 2018;10:34886–904.
Article
CAS
Google Scholar
Kang T, Guan R, Chen X, Song Y, Jiang H, Zhao J. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett. 2013;8:496.
Article
Google Scholar
Han XX, Köhler C, Kozuch J, Kuhlmann U, Paasche L, Sivanesan A, et al. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2: A case study on cytochrome b5. Small. 2013;9:4175–81.
Article
CAS
Google Scholar
Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron. 2014;51:238–43.
Article
CAS
Google Scholar
Yang L, Peng Y, Yang Y, Liu J, Li Z, Ma Y, et al. Green and sensitive flexible semiconductor SERS substrates: Hydrogenated black TiO2 nanowires. ACS Appl Nano Mater. 2018;1:4516–27.
Article
CAS
Google Scholar
Wu H, Wang H, Li G. Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst. 2017;142:326–35.
Article
CAS
Google Scholar
Chen M, Li K, Luo Y, Shi J, Weng C, Gao L, et al. Improved SERS activity of non-stoichiometric copper sulfide nanostructures related to charge-transfer resonance. Phys Chem Chem Phys. 2020;22:5145–53.
Article
CAS
Google Scholar
Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun. 2017;8:1993.
Article
Google Scholar
Cheng YF, Cao Q, Zhang J, Wu T, Che R. Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering. Appl Catal B: Environ. 2017;217:37–47.
Article
CAS
Google Scholar
Prasad MD, Krishna MG, Batabyal SK. Facet-engineered surfaces of two-dimensional layered BiOI and Au–BiOI substrates for tuning the surface-enhanced Raman scattering and visible light photodetector response. ACS Appl Nano Mater. 2019;2:3906–15.
Article
CAS
Google Scholar
Wang X, Shi W, She G, Mu L. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on the photoinduced charge transfer mechanism. J Am Chem Soc. 2011;133:16518–23.
Article
CAS
Google Scholar
Cui H, Li S, Deng S, Chen H, Wang C. Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection. ACS Sens. 2017;2:386–93.
Article
CAS
Google Scholar
Haldavnekar R, Venkatakrishnan K, Tan B. Non-plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat Commun. 2018;9:3065.
Article
Google Scholar
Keshavarz M, Kassanos P, Tan B, Venkatakrishnan K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020;5:294–307.
Article
CAS
Google Scholar
Yilmaz M, Babur E, Ozdemir M, Gieseking RL, Dede Y, Tamer U, et al. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat Mater. 2017;16:918–24.
Article
CAS
Google Scholar
Demirel G, Gieseking RLM, Ozdemir R, Kahmann S, Loi MA, Schatz GC, et al. Molecular engineering of organic semiconductors enable noble metal-comparable SERS enhancement and sensitivity. Nat Commun. 2019;10:5502.
Article
CAS
Google Scholar
Ganesh S, Venkatakrishnan K, Tan B. Quantum scale organic semiconductors for SERS detection of DNA methylation and gene expression. Nat Commun. 2020;11:1135.
Article
CAS
Google Scholar
Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol Adv. 2017;35:168–77.
Article
CAS
Google Scholar
Kho KW, Fu CY, Dinish US, Olivo M. Clinical SERS: are we there yet? J Biophotonics. 2011;4:667–84.
Article
Google Scholar
Liu X, Knauer M, Ivleva NP, Niessner R, Haisch C. Synthesis of core−shell surface-enhanced Raman tags for bioimaging. Anal Chem. 2010;82:441–6.
Article
CAS
Google Scholar
Yu Q, Wang Y, Mei R, Yin Y, You J, Chen L. Polystyrene encapsulated SERS tags as promising standard tools: Simple and universal in synthesis; highly sensitive and ultrastable for bioimaging. Anal Chem. 2019;91:5270–7.
Article
CAS
Google Scholar
Zhang L, Zhang R, Gao M, Zhang X. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its usage in the assembly of polydopamine protected bioorthogonal SERS tag for live cell imaging. Talanta. 2016;158:315–21.
Article
CAS
Google Scholar
Wen S, Miao X, Fan G-C, Xu T, Jiang LP, Wu P, et al. Aptamer-conjugated Au nanocage/SiO2 core-shell bifunctional nanoprobes with high stability and biocompatibility for cellular SERS imaging and near-infrared photothermal therapy. ACS Sens. 2019;4:301–8.
Article
Google Scholar
Jaworska A, Wojcik T, Malek K, Kwolek U, Kepczynski M, Ansary AA, et al. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim Acta. 2015;182:119–27.
Article
CAS
Google Scholar
Neng J, Harpster MH, Zhang H, Mecham JO, Wilson WC, Johnson PA. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens Bioelectron. 2010;26:1009–15.
Article
CAS
Google Scholar
Song D, Yang R, Fang S, Liu Y, Long F, Zhu A. SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim Acta. 2018;185:491.
Article
Google Scholar
Simon T, Potara M, Gabudean AM, Licarete E, Banciu M, Astilean S. Designing theranostic agents based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy. ACS Appl Mater Interfaces. 2015;7:16191–201.
Article
CAS
Google Scholar
Luo Z, Chen K, Lu D, Han H, Zou M. Synthesis of p-amino thiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta. 2011;173:149–56.
Article
CAS
Google Scholar
Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, Wang S, Liu G, Yan X, Zhong Q, Ren B. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards. Angew Chem Int Ed. 2015;54:7308–12.
Article
CAS
Google Scholar
Loren A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, Abrahamsson K. Internal standard in surface-enhanced Raman spectroscopy. Anal Chem. 2004;76:7391–5.
Article
CAS
Google Scholar
Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L. Gold nanorod array-bridged internal-standard SERS tags: From ultrasensitivity to multifunctionality. ACS Appl Mater Interfaces. 2020;12:2059–66.
Article
CAS
Google Scholar
Zou Y, Chen L, Song Z, Ding D, Chen Y, Xu Y, et al. Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis. Nano Res. 2016;9:1418–25.
Article
CAS
Google Scholar
Zhang J, Zhang X, Chen S, Gong T, Zhu Y. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon. 2016;100:395–407.
Article
CAS
Google Scholar
Justino CIL, Freitas AC, Pereira R, Cuarte AC, Rocha-Santos TAP. Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal Chem. 2015;68:2–17.
Article
CAS
Google Scholar
Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, et al. Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces. 2016;8:19958–67.
Article
CAS
Google Scholar
Pang Y, Wang C, Xiao R, Sun Z. Dual-selective and dual-enhanced SERS nanoprobes strategy for circulating hepatocellular carcinoma cells detection. Chem Eur J. 2018;24:7060–7.
Article
CAS
Google Scholar
Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, et al. Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B. 2018;6:3751–61.
Article
CAS
Google Scholar
Zou Y, Huang S, Liao Y, Zhu X, Chen Y, Chen L, et al. Isotopic graphene–isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chem Sci. 2018;9:2842–9.
Article
CAS
Google Scholar
Yin D, Wang S, He Y, Liu J, Zhou M, Ouyang J, et al. Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem Commun. 2015;51:17696–9.
Article
CAS
Google Scholar
Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, et al. Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal Chim Acta. 2019;1077:288–96.
Article
CAS
Google Scholar
Tang R, Hu R, Jiang X, Lu F. LHRH-targeting surface-enhanced Raman scattering tags for the rapid detection of circulating tumor cells. Sens Actuat B Chem. 2019;284:468–74.
Article
CAS
Google Scholar
Zhang Q, Li J, Tang P, Lu X, Tian J, Zhong L. Dynamic imaging of transferrin receptor molecules on single live cell with bridge gaps-enhanced Raman tags. Nanomaterials. 2019;9:1373.
Article
CAS
Google Scholar
Wen H, Jiang P, Hu Y, Li G. Synthesis of Au@Ag core-shell nanostructures with a poly(3,4-dihydroxy-L-phenylalanine) interlayer for surface-enhanced Raman scattering imaging of epithelial cells. Microchim Acta. 2018;185:353.
Article
Google Scholar
Beqa L, Fan Z, Singh AK, Senapati D, Ray PC. Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces. 2011;3:3316–24.
Article
CAS
Google Scholar
Wang X, Wang C, Cheng L, Lee ST, Liu Z. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc. 2012;134:7414–22.
Article
CAS
Google Scholar
Kim S, Kim TG, Lee SH, Kim W, Bang A, Moon SW, et al. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl Mater Interfaces. 2020;12:7897–904.
Article
CAS
Google Scholar
Zhu K, Wang Z, Zong S, Liu Y, Yang K, Li N, et al. Hydrophobic plasmonic nanoacorn array for a label-free and uniform SERS-based biomolecular assay. ACS Appl Mater Interfaces. 2020;12:29917–27.
CAS
Google Scholar
Bai XR, Wang LH, Ren JQ, Bai XW, Zeng LW, Shen AG, et al. Accurate clinical diagnosis of liver cancer based on simultaneous detection of ternary specific antigens by magnetic induced mixing surface-enhanced Raman scattering emissions. Anal Chem. 2019;91:2955–63.
Article
CAS
Google Scholar
Lin D, Wu Q, Qiu S, Chen G, Feng S, Chen R, et al. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomed Nanotechnol. 2019;22: 102100.
Article
CAS
Google Scholar
Leong SX, Leong YX, Tan EX, Sim HYF, Koh CSL, Lee YH, et al. Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. ACS Nano. 2022;16:2629–39.
Article
CAS
Google Scholar
Plou J, Valera P-S, Garcia I, Albuquerque CDL, Carracedo A, Marzan LML. Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring toward precision medicine. ACS Photonics. 2022;9:333–50.
Article
CAS
Google Scholar
Lussier F, Thibault V, Charron B, Wallace GQ, Masson JF. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. Trend Anal Chem. 2020;124: 115796.
Article
CAS
Google Scholar
Tang JW, Liu QH, Yin XC, Pan YC, Wen PB, Liu X, et al. Comparative analysis of machine learning algorithms on surface-enhanced Raman spectra of clinical Staphylococcus species. Front Microbiol. 2021;12: 696921.
Article
Google Scholar
Huang J, Wen J, Zhou M, Ni S, Le W, Chen G, et al. On-site detection of SARS-CoV-2 antigen by deep learning-based surface-enhanced Raman spectroscopy and its biochemical foundations. Anal Chem. 2021;93:9174–82.
Article
CAS
Google Scholar
Shin H, Oh S, Hong S, Kang M, Kang D, Ji Y-G, et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano. 2020;14:5435–44.
Article
CAS
Google Scholar
Lin X, Lin D, Chen Y, Lin J, Weng S, Song J, Feng S. High throughput blood analysis based on deep learning algorithm and self-positioning super-hydrophobic SERS platform for non-invasive multi-disease screening. Adv Function Mater. 2021;31:2103382.
Article
CAS
Google Scholar
Uzayisenga V, Lin XD, Li LM, Anema JR, Yang ZL, Huang YF, et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir. 2012;28:9140–6.
Article
CAS
Google Scholar
Yang JL, Li RP, Han JH, Huang MJ. FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles. Chin Phys B. 2016;25: 083301.
Article
Google Scholar
Tira C, Tira D, Simon T, Astilean S. Finite-difference time-domain (FDTD) design of gold nanoparticle chains with specific surface plasmon resonance. J Mol Struct. 2014;1072:137–43.
Article
CAS
Google Scholar
Li M, Wang JY, Chen QQ, Lin LH, Radjenovic P, Zhang H, et al. Background-free quantitative surface enhanced Raman spectroscopy analysis using core-shell nanoparticles with an inherent internal standard. Anal Chem. 2019;91:15025–31.
Article
CAS
Google Scholar
Shen W, Lin X, Jiang C, Li C, Lin H, Huang J, et al. Reliable quantitative SERS analysis facilitated by core-shell nanoparticles with embedded internal standards. Angew Chem Int Ed. 2015;54:7308–12.
Article
CAS
Google Scholar
Rho E, Kim M, Cho SH, Choi B, Park H, Jang H, et al. Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis. Biosens Bioelectron. 2022;202: 113991.
Article
CAS
Google Scholar
Thrift WJ, Ronaghi S, Samad M, Wei H, Nguyen DG, Cabuslay AS, et al. Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. ACS Nano. 2020;14:15336–48.
Article
Google Scholar
Liu H, Gao X, Xu C, Liu D. SERS tags for biomedical detection and bioimaging. Theranostics. 2022;12:1870–903.
Article
CAS
Google Scholar
Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.
Article
CAS
Google Scholar
Israelsen ND, Hanson C, Vargis E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. Sci World J. 2015;2015: 124582.
Article
Google Scholar
Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun. 2019;55:5540–6.
Article
Google Scholar
Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–24.
Article
Google Scholar
Ishigaki M, Maeda Y, Taketani A, Andriana BB, Ishihara R, Wongravee K, et al. Diagnosis of early-stage esophageal cancer by Raman spectroscopy and chemometric techniques. Analyst. 2016;141:1027–33.
Article
CAS
Google Scholar
Yeh Y-T, Gulino K, Zhang Y, Sabestien A, Chou T-W, Zhou B, et al. A rapid and label-free platform for virus capture and identification from clinical samples. P Natl Acad Sci. 2020;117:895.
Article
CAS
Google Scholar
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, et al. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta. 2022;1209: 339250.
Article
CAS
Google Scholar
Wang Y, Zhao C, Wang J, Luo X, Xie L, Zhan S, et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv. 2021;7:eabe4553.
Article
CAS
Google Scholar
Koh EH, Lee WC, Choi YJ, Moon JI, Jang J, Park SG, et al. A Wearable surface-enhanced Raman scattering sensor for label-free molecular detection. ACS Appl Mater Interfaces. 2021;13:3024–32.
Article
CAS
Google Scholar
Wang Y, Zhou C, Wang W, Xu D, Zeng F, Zhan C, et al. Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew Chem Int Ed. 2018;57:13110–3.
Article
CAS
Google Scholar
Fan X, Hao Q, Li M, Zhang X, Yang X, Mei Y, et al. Hotspots on the move: Active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl Mater Interfaces. 2020;12:28783–91.
Article
CAS
Google Scholar