Daiger S, Sullivan L, Bowne S, Rossiter B. RetNet: retinal information network. Na+ Ca2. 2013;5.
Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P. Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet. 2017;26:R2–11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koenekoop RK, Sui R, Sallum J, Van Den Born LI, Ajlan R, Khan A, Den Hollander AI, Cremers FP, Mendola JD, Bittner AK. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet. 2014;384:1513–20.
Article
PubMed
CAS
Google Scholar
Bennett J, Wellman J, Marshall KA, McCague S, Ashtari M, DiStefano-Pappas J, Elci OU, Chung DC, Sun J, Wright JF. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet. 2016;388:661–72.
Article
PubMed
CAS
PubMed Central
Google Scholar
Finger RP, Fimmers R, Holz FG, Scholl HP. Prevalence and causes of registered blindness in the largest federal state of Germany. Br J Ophthalmol. 2011;95:1061–7.
Article
PubMed
Google Scholar
Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open. 2014;4:e004015.
Article
PubMed
PubMed Central
Google Scholar
Khan NW, Falsini B, Kondo M, Robson AG. Inherited retinal degeneration: genetics, disease characterization, and outcome measures. J Ophthalmol. 2017. https://doi.org/10.1155/2017/2109014.
Article
PubMed
PubMed Central
Google Scholar
Sullivan LS, Daiger SP. Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today. 1996;2:380–6.
Article
PubMed
CAS
Google Scholar
Gupta PR, Huckfeldt RM. Gene therapy for inherited retinal degenerations: initial successes and future challenges. J Neural Eng. 2017;14: 051002.
Article
PubMed
Google Scholar
Flotte TR. Size does matter: overcoming the adeno-associated virus packaging limit. Respir Res. 2000;1:16–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Peng R, Lin G, Li J. Potential pitfalls of CRISPR/Cas9-mediated genome editing. FEBS J. 2016;283:1218–31.
Article
PubMed
CAS
Google Scholar
Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol. 2005;79:9933–44.
Article
PubMed
CAS
PubMed Central
Google Scholar
Selot R S, Hareendran S, Jayandharan G R. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr Pharm Biotechnol. 2013;14:1072–82.
Article
Google Scholar
Weleber RG, Pennesi ME, Wilson DJ, Kaushal S, Erker LR, Jensen L, McBride MT, Flotte TR, Humphries M, Calcedo R. Results at 2 years after gene therapy for RPE65-deficient Leber congenital amaurosis and severe early-childhood–onset retinal dystrophy. Ophthalmology. 2016;123:1606–20.
Article
PubMed
Google Scholar
Thompson DA, Iannaccone A, Ali RR, Arshavsky VY, Audo I, Bainbridge JW, Besirli CG, Birch DG, Branham KE, Cideciyan AV. Advancing clinical trials for inherited retinal diseases: recommendations from the Second Monaciano Symposium. Transl Vis Sci Technol. 2020;9:2–2.
Article
PubMed
PubMed Central
Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–8.
Article
PubMed
CAS
Google Scholar
Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.
Article
PubMed
CAS
Google Scholar
Moreno AM, Fu X, Zhu J, Katrekar D, Shih YRV, Marlett J, Cabotaje J, Tat J, Naughton J, Lisowski L. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol Ther. 2018;26:1818–27.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.
Article
PubMed
CAS
Google Scholar
Nakamura H, Matsui KA, Takagi S, Fujisawa H. Projection of the retinal ganglion cells to the tectum differentiated from the prosencephalon. Neurosci Res. 1991;11:189–97.
Article
PubMed
CAS
Google Scholar
Polyak SL. The retina. Chicago: University of Chicago Press; 1941.
Google Scholar
Henrich PB, Monnier CA, Halfter W, Haritoglou C, Strauss RW, Lim RY, Loparic M. Nanoscale topographic and biomechanical studies of the human internal limiting membrane. Invest Ophthalmol Vis Sci. 2012;53:2561–70.
Article
PubMed
Google Scholar
Slijkerman RW, Song F, Astuti GD, Huynen MA, van Wijk E, Stieger K, Collin RW. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res. 2015;48:137–59.
Article
PubMed
Google Scholar
Pitkänen L, Pelkonen J, Ruponen M, Rönkkö S, Urtti A. Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model. AAPS J. 2004;6:72–80.
Article
PubMed Central
Google Scholar
Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells. 2016;34:1553–62.
Article
PubMed
CAS
Google Scholar
Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ, Drack AV, Braun TA, Stone EM. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife. 2013;2: e00824.
Article
PubMed
PubMed Central
Google Scholar
Deng W-L, Gao M-L, Lei X-L, Lv J-N, Zhao H, He K-W, Xia X-X, Li L-Y, Chen Y-C, Li Y-P, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep. 2018;10:1267–81.
Article
CAS
Google Scholar
Buskin A, Zhu L, Chichagova V, Basu B, Mozaffari-Jovin S, Dolan D, Droop A, Collin J, Bronstein R, Mehrotra S, et al. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat Commun. 2018;9:4234.
Article
PubMed
PubMed Central
Google Scholar
Huang K-C, Wang M-L, Chen S-J, Kuo J-C, Wang W-J, Nguyen PNN, Wahlin KJ, Lu J-F, Tran AA, Shi M. Morphological and molecular defects in human three-dimensional retinal organoid model of X-linked juvenile retinoschisis. Stem Cell Rep. 2019;13:906–23.
Article
CAS
Google Scholar
Parfitt DA, Lane A, Ramsden CM, Carr AJ, Munro PM, Jovanovic K, Schwarz N, Kanuga N, Muthiah MN, Hull S, et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell. 2016;18:769–81.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P, Maguire AM. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996;2:649–54.
Article
PubMed
CAS
Google Scholar
Jackson GR, Barber AJ. Visual dysfunction associated with diabetic retinopathy. Curr DiabRep. 2010;10:380–4.
Google Scholar
Jackson GR, Owsley C, Curcio CA. Photoreceptor degeneration and dysfunction in aging and age-related maculopathy. Ageing Res Rev. 2002;1:381–96.
Article
PubMed
Google Scholar
Huang X-F, Huang F, Wu K-C, Wu J, Chen J, Pang C-P, Lu F, Qu J, Jin Z-B. Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet Med. 2015;17:271–8.
Article
PubMed
CAS
Google Scholar
Glöckle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, Bernd A, Rudolph G, Schubach M, Poloschek C. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet. 2014;22:99–104.
Article
PubMed
Google Scholar
Bernardis I, Chiesi L, Tenedini E, Artuso L, Percesepe A, Artusi V, Simone ML, Manfredini R, Camparini M, Rinaldi C. Unravelling the complexity of inherited retinal dystrophies molecular testing: added value of targeted next-generation sequencing. Biomed Res Int. 2016;2016:14.
Article
Google Scholar
Novak-Lauš K, Kukulj S, Zorić-Geber M, Bastaić O. Primary tapetoretinal dystrophies as the cause of blindness and impaired vision in the republic of Croatia. Acta Clin Croat. 2002;41:23–7.
Google Scholar
Haim M. Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand. 2002;80:1.
Article
Google Scholar
Grøndahl J. Estimation of prognosis and prevalence of retinitis pigmentosa and Usher syndrome in Norway. Clin Genet. 1987;31:255–64.
Article
PubMed
Google Scholar
Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH. Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol. 1984;97:357–65.
Article
PubMed
CAS
Google Scholar
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: past, present and future. Prog Retin Eye Res. 2017;59:53–96.
Article
PubMed
CAS
Google Scholar
Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet. 2010;11:273–84.
Article
PubMed
CAS
Google Scholar
Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr. 2015;4:139–63.
PubMed
PubMed Central
Google Scholar
Iannaccone A. The genetics of hereditary retinopathies and optic neuropathies. Compr Ophthalmol Update. 2005;6:39–62.
Google Scholar
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.
Article
PubMed
CAS
Google Scholar
Daiger S, Rossiter B, Greenberg J, Christoffels A, Hide W. Data services and software for identifying genes and mutations causing retinal degeneration. Invest Ophthalmol Vis Sci. 1998;39:S295.
Google Scholar
Bramall AN, Wright AF, Jacobson SG, McInnes RR. The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci. 2010;33:441–72.
Article
PubMed
CAS
Google Scholar
Erkilic N, Sanjurjo-Soriano C, Manes G, Dubois G, Hamel CP, Meunier I, Kalatzis V. Generation of a human iPSC line, INMi004-A, with a point mutation in CRX associated with autosomal dominant Leber congenital amaurosis. Stem Cell Res. 2019;38: 101476.
Article
PubMed
CAS
Google Scholar
Diakatou M, Manes G, Bocquet B, Meunier I, Kalatzis V. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa. Int J Mol Sci. 2019;20:2542.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ahn J, Chiang J, Gorin MB. Novel mutation in SLC4A7 gene causing autosomal recessive progressive rod-cone dystrophy. Ophthalmic Genet. 2020;41:386–9.
Article
PubMed
CAS
Google Scholar
Vijayasarathy C, Takada Y, Zeng Y, Bush RA, Sieving PA. Retinoschisin is a peripheral membrane protein with affinity for anionic phospholipids and affected by divalent cations. Invest Ophthalmol Vis Sci. 2007;48:991–1000.
Article
PubMed
Google Scholar
Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A, Lorenz B, Jurklies B, Weber BH. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet. 1997;17:164–70.
Article
PubMed
CAS
Google Scholar
Hiriyanna KT, Bingham EL, Yashar BM, Ayyagari R, Fishman G, Small KW, Weinberg DV, Weleber RG, Lewis RA, Andreasson S. Novel mutations in XLRS1 causing retinoschisis, including first evidence of putative leader sequence change. Hum Mutat. 1999;14:423–7.
Article
PubMed
CAS
Google Scholar
Ali MH, Vajzovic L. X-Linked Juvenile Retinoschisis. In: Toth CA, Ong SS, editors. Handbook of pediatric retinal OCT and the eye-brain connection. Philadelphia: Elsevier; 2020. p. 119–23.
Chapter
Google Scholar
Dalkara D, Sahel J-A. Gene therapy for inherited retinal degenerations. CR Biol. 2014;337:185–92.
Article
Google Scholar
Dryja T, Li T. Molecular genetics of retinitis pigmentosa. Hum Mol Genet. 1995;4:1739–43.
Article
PubMed
CAS
Google Scholar
Arbabi A, Liu A, Ameri H. Gene therapy for inherited retinal degeneration. J Ocul Pharmacol Ther. 2019;35:79–97.
Article
PubMed
CAS
Google Scholar
Lee JH, Wang J-H, Chen J, Li F, Edwards TL, Hewitt AW, Liu G-S. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53.
Article
PubMed
CAS
Google Scholar
Ramlogan-Steel CA, Murali A, Andrzejewski S, Dhungel B, Steel JC, Layton CJ. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: trials, future directions and safety considerations. Clin Exp Ophthalmol. 2019;47:521–36.
Article
PubMed
Google Scholar
Soofiyani SR, Baradaran B, Lotfipour F, Kazemi T, Mohammadnejad L. Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull. 2013;3:249.
Google Scholar
Trapani I, Auricchio A. Seeing the light after 25 years of retinal gene therapy. Trends Mol Med. 2018;24:669–81.
Article
PubMed
Google Scholar
Wert KJ, Davis RJ, Sancho-Pelluz J, Nishina PM, Tsang SH. Gene therapy provides long-term visual function in a pre-clinical model of retinitis pigmentosa. Hum Mol Genet. 2013;22:558–67.
Article
PubMed
CAS
Google Scholar
Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, Pang JJ, Sumaroka A, Windsor EA, Wilson JM. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci. 2008;105:15112–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smalley E. First AAV gene therapy poised for landmark approval. Nat Biotech. 2017. https://doi.org/10.1038/nbt1117-998.
Article
Google Scholar
Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, Yuan H, Lalwani A, Lam BL, Guy J. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123:558–70.
Article
PubMed
Google Scholar
Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL. Gene therapy for Leber hereditary optic neuropathy: low-and medium-dose visual results. Ophthalmology. 2017;124:1621–34.
Article
PubMed
Google Scholar
Fischer MD, Ochakovski GA, Beier B, Seitz IP, Vaheb Y, Kortuem C, Reichel FF, Kuehlewein L, Kahle NA, Peters T. Efficacy and safety of retinal gene therapy using adeno-associated virus vector for patients with choroideremia: a randomized clinical trial. JAMA Ophthalmol. 2019;137:1247–54.
Article
PubMed
PubMed Central
Google Scholar
Lam BL, Davis JL, Gregori NZ, MacLaren RE, Girach A, Verriotto JD, Rodriguez B, Rosa PR, Zhang X, Feuer WJ. Choroideremia gene therapy phase 2 clinical trial: 24-month results. Am J Ophthalmol. 2019;197:65–73.
Article
PubMed
CAS
Google Scholar
MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.
Article
PubMed
CAS
PubMed Central
Google Scholar
McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res. 2013;161:241–54.
Article
PubMed
CAS
Google Scholar
Russell S, Bennett J, Wellman J, Chung D, High K, Tillman A. Phase 3 trial update of voretigene neparvovec in biallelic RPE65-mediated inherited retinal disease. Am Acad Ophthalmol AAO. 2017;2017:11–4.
Google Scholar
Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A, Wittes J, Pappas J, Elci O, McCague S. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R, Wang L, Castle MJ, Maguire AC, Grant R. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med. 2011;3:88ra54-88ra54.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koerber JT, Klimczak R, Jang J-H, Dalkara D, Flannery JG, Schaffer DV. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther. 2009;17:2088–95.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dyka FM, Molday LL, Chiodo VA, Molday RS, Hauswirth WW. Dual ABCA4-AAV vector treatment reduces pathogenic retinal A2E accumulation in a mouse model of autosomal recessive stargardt disease. Hum Gene Ther. 2019;30:1361–70.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods. 2014;25:166–77.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zeng Y, Takada Y, Kjellstrom S, Hiriyanna K, Tanikawa A, Wawrousek E, Smaoui N, Caruso R, Bush RA, Sieving PA. RS-1 gene delivery to an adult Rs1h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked retinoschisis. Invest Ophthalmol Vis Sci. 2004;45:3279–85.
Article
PubMed
Google Scholar
Park T, Wu Z, Kjellstrom S, Zeng Y, Bush RA, Sieving P, Colosi P. Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Ther. 2009;16:916–26.
Article
PubMed
CAS
PubMed Central
Google Scholar
Byrne LC, Öztürk BE, Lee T, Fortuny C, Visel M, Dalkara D, Schaffer DV, Flannery JG. Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther. 2014;21:585–92.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sengillo JD, Justus S, Tsai YT, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. In: Tan WH, Bird LM, editors. American journal of medical genetics part c: seminars in medical genetics. Toronto: Wiley; 2016. p. 349–66.
Google Scholar
Lewin AS, Rossmiller B, Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb Perspect Med. 2014;4: a017400.
Article
PubMed
PubMed Central
Google Scholar
Davis JL, Gregori NZ, MacLaren RE, Lam BL. Surgical technique for subretinal gene therapy in humans with inherited retinal degeneration. Retina. 2019;39:S2–8.
Article
PubMed
Google Scholar
Davis JL. The blunt end: surgical challenges of gene therapy for inherited retinal diseases. Am J Ophthalmol. 2018;196:1–3.
Article
Google Scholar
Andrieu-Soler C, Bejjani R-A, de Bizemont T, Normand N, BenEzra D, Behar-Cohen F. Ocular gene therapy: a review of nonviral strategies. Mol Vis. 2006;12:1334–47.
PubMed
CAS
Google Scholar
Han Z, Conley SM, Naash MI. AAV and compacted DNA nanoparticles for the treatment of retinal disorders: challenges and future prospects. Invest Ophthalmol Vis Sci. 2011;52:3051–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials. 2013;34:7158–67.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Res. 2008;48:319–24.
Article
PubMed
CAS
Google Scholar
Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Investig. 2012;122:3221–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV. In vivo—directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5:189ra176-189ra176.
Article
Google Scholar
Petrs-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J-J, Zhong L, Zolotukhin S, Srivastava A, Lewin AS. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther. 2009;17:463–71.
Article
PubMed
CAS
Google Scholar
Leroy B, Pennesi M, Ohnsman C. Brave new world: gene therapy for inherited retinal disease. In: Leroy B, Pennesi M, Ohnsman C, editors. American academy of ophthalmology. San Francisco: EyeNet; 2018. p. 1–16.
Google Scholar
Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2013;32:22–47.
Article
PubMed
CAS
Google Scholar
Pennesi ME, Birch DG, Duncan JL, Bennett J, Girach A. Choroideremia: retinal degeneration with an unmet need. Retina. 2019;39:2059–69.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Methodologies for improving HDR efficiency. Front Genet. 2019;9:691.
Article
PubMed
PubMed Central
Google Scholar
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ran F, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.
Article
PubMed
CAS
PubMed Central
Google Scholar
Le Rhun A, Escalera-Maurer A, Bratovic M, Charpentier E. CRISPR-Cas in Streptococcus pyogenes. RNA Biol. 2019;16:380–9.
Article
PubMed
PubMed Central
Google Scholar
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. Prog Brain Res. 2017;231:191–223.
Article
PubMed
Google Scholar
Hazim RA, Karumbayaram S, Jiang M, Dimashkie A, Lopes VS, Li D, Burgess BL, Vijayaraj P, Alva-Ornelas JA, Zack JA. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:1–17.
Article
Google Scholar
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res. 2017;58:1–27.
Article
PubMed
PubMed Central
Google Scholar
Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, Nandrot EF, Sahel J-A, Monville C, Goureau O. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci. 2014;111:8518–23.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nami F, Basiri M, Satarian L, Curtiss C, Baharvand H, Verfaillie C. Strategies for in vivo genome editing in nondividing cells. Trends Biotechnol. 2018;36:770–86.
Article
PubMed
CAS
Google Scholar
Yamamoto Y, Bliss J, Gerbi SA. Whole organism genome editing: Targeted large DNA insertion via ObLiGaRe nonhomologous end-joining in vivo capture. G3. 2015;5:1843–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ishizu T, Higo S, Masumura Y, Kohama Y, Shiba M, Higo T, Shibamoto M, Nakagawa A, Morimoto S, Takashima S. Targeted genome replacement via homology-directed repair in non-dividing cardiomyocytes. Sci Rep. 2017;7:1–11.
Article
CAS
Google Scholar
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540:144–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Waldron D. In vivo gene editing in non-dividing cells. Nat Rev Genet. 2017;18:1–1.
Article
PubMed
CAS
Google Scholar
Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11:118–33.
Article
PubMed
CAS
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.
Article
PubMed
CAS
PubMed Central
Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 2016;17:5–15.
Article
PubMed
CAS
Google Scholar
Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 2014;24:142–53.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suzuki K, Izpisua Belmonte JC. In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet. 2018;63:157–64.
Article
PubMed
CAS
Google Scholar
He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 2016;44: e85.
Article
PubMed
PubMed Central
Google Scholar
Papapetrou EP, Schambach A. Gene insertion into genomic safe harbors for human gene therapy. Mol Ther. 2016;24:678–84.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine. ACS Chem Biol. 2018;13:406–16.
Article
PubMed
CAS
Google Scholar
Chou SJ, Yang P, Ban Q, Yang YP, Wang ML, Chien CS, Chen SJ, Sun N, Zhu Y, Liu H, et al. Dual supramolecular nanoparticle vectors enable CRISPR/Cas9-mediated knockin of Retinoschisin 1 Gene-A potential nonviral therapeutic solution for X-linked Juvenile Retinoschisis. Adv Sci (Weinh). 2020;7:1903432.
Article
PubMed
CAS
Google Scholar
Sikkink SK, Biswas S, Parry NR, Stanga PE, Trump D. X-linked retinoschisis: an update. J Med Genet. 2007;44:225–32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tantri A, Vrabec TR, Cu-Unjieng A, Frost A, Annesley WH Jr, Donoso LA. X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol. 2004;49:214–30.
Article
PubMed
Google Scholar
Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther. 2016;24:556–63.
Article
PubMed
CAS
PubMed Central
Google Scholar
Burnight ER, Gupta M, Wiley LA, Anfinson KR, Tran A, Triboulet R, Hoffmann JM, Klaahsen DL, Andorf JL, Jiao C. Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration. Mol Ther. 2017;25:1999–2013.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vagni P, Perlini LE, Chenais N, Marchetti T, Parrini M, Contestabile A, Cancedda L, Ghezzi D. Gene editing preserves visual functions in a mouse model of retinal degeneration. Front Neurosci. 2019;13:945.
Article
PubMed
PubMed Central
Google Scholar
Yang X, Bayat V, DiDonato N, Zhao Y, Zarnegar B, Siprashvili Z, Lopez-Pajares V, Sun T, Tao S, Li C. Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. Hum Mol Genet. 2020;29:541–53.
Article
PubMed
CAS
Google Scholar
Philippidis A. One small dose, one giant leap for CRISPR gene editing. Hum Gene Ther. 2020;31:402–4.
Article
PubMed
CAS
Google Scholar
Suh S, Choi EH, Leinonen H, Foik AT, Newby GA, Yeh WH, Dong Z, Kiser PD, Lyon DC, Liu DR, Palczewski K. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng. 2021;5:169–78.
Article
PubMed
CAS
Google Scholar
Liu Y, Li X, He S, Huang S, Li C, Chen Y, Liu Z, Huang X, Wang X. Efficient generation of mouse models with the prime editing system. Cell Discov. 2020;6:27.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu P, Liang SQ, Zheng C, Mintzer E, Zhao YG, Ponnienselvan K, Mir A, Sontheimer EJ, Gao G, Flotte TR, et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat Commun. 2021;12:2121.
Article
PubMed
CAS
PubMed Central
Google Scholar
Peddle CF, Fry LE, McClements ME, MacLaren RE. CRISPR interference-potential application in retinal disease. Int J Mol Sci. 2020;21:2329.
Article
PubMed
CAS
PubMed Central
Google Scholar
Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28:723–46.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21:255–72.
Article
PubMed
CAS
Google Scholar
Patel A, Zhao J, Duan D, Lai Y. Design of AAV vectors for delivery of large or multiple transgenes. Methods Mol Biol. 2019;1950:19–33.
Article
PubMed
CAS
Google Scholar
Duan D, Yue Y, Engelhardt JF. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther. 2001;4:383–91.
Article
PubMed
CAS
Google Scholar
Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Mehta M, Munshi A, Ramesh R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115–70.
Article
PubMed
CAS
Google Scholar
Kim HS, Sun X, Lee J-H, Kim H-W, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209–39.
Article
PubMed
CAS
Google Scholar
Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1445.
Article
PubMed
PubMed Central
Google Scholar
Matoba T, Koga JI, Nakano K, Egashira K, Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol. 2017;70:206–11.
Article
PubMed
Google Scholar
Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Semin Cancer Biol. 2019. https://doi.org/10.1016/j.semcancer.2019.10.020.
Article
PubMed
Google Scholar
Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res. 2019. https://doi.org/10.1007/s11356-019-05211-0.
Article
Google Scholar
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941.
Article
PubMed
CAS
PubMed Central
Google Scholar
Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13:1099–106.
Article
PubMed
CAS
Google Scholar
Kievit FM, Zhang M. Cancer therapy: cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers (Adv. Mater. 36/2011). Adv Mater. 2011;23:H209–H209.
Article
Google Scholar
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48:416–27.
Article
PubMed
CAS
Google Scholar
Givens BE, Naguib YW, Geary SM, Devor EJ, Salem AK. Nanoparticle-based delivery of CRISPR/Cas9 genome-editing therapeutics. AAPS J. 2018;20:108.
Article
PubMed
Google Scholar
Nakade S, Yamamoto T, Sakuma T. Cas9, Cpf1 and C2c1/2/3-what’s next? Bioengineered. 2017;8:265–73.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xu Y, Liu R, Dai Z. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. Nanoscale. 2020;12:21001–14.
Article
PubMed
CAS
Google Scholar
Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11:614.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today. 2019;24:1510–23.
Article
PubMed
CAS
Google Scholar
Jackson TL, Antcliff RJ, Hillenkamp J, Marshall J. Human retinal molecular weight exclusion limit and estimate of species variation. Invest Ophthalmol Vis Sci. 2003;44:2141–6.
Article
PubMed
Google Scholar
Sebag J. Anatomy and pathology of the vitreo-retinal interface. Eye (Lond). 1992;6(Pt 6):541–52.
Article
PubMed
Google Scholar
Tavakoli S, Peynshaert K, Lajunen T, Devoldere J, Del Amo EM, Ruponen M, De Smedt SC, Remaut K, Urtti A. Ocular barriers to retinal delivery of intravitreal liposomes: impact of vitreoretinal interface. J Control Release. 2020;328:952–61.
Article
PubMed
CAS
Google Scholar
Huang X, Chau Y. Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles. Exp Eye Res. 2019;186: 107711.
Article
PubMed
CAS
Google Scholar
Altınoglu S, Wang M, Xu Q. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine. 2015;10:643–57.
Article
PubMed
Google Scholar
Freitag F, Wagner E. Optimizing synthetic nucleic acid and protein nanocarriers: the chemical evolution approach. Adv Drug Deliv Rev. 2021;168:30–54.
Article
PubMed
CAS
Google Scholar
Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 2014;25:1602–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rahimi H, Salehiabar M, Charmi J, Barsbay M, Ghaffarlou M, Razlighi MR, Davaran S, Khalilov R, Sugiyama M, Nosrati H. Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system. Nano Today. 2020;34: 100895.
Article
CAS
Google Scholar
Tang H, Zhao X, Jiang X. Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing. Adv Drug Deliv Rev. 2020. https://doi.org/10.1016/j.addr.2020.03.001.
Article
PubMed
Google Scholar
Wan T, Niu D, Wu C, Xu F-J, Church G, Ping Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook. Mater Today. 2019;26:40–66.
Article
CAS
Google Scholar
Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22:2227–35.
Article
PubMed
CAS
Google Scholar
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, Xu Q, Wang M. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31:1902575.
Article
Google Scholar
Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed. 2017;56:1059–63.
Article
CAS
Google Scholar
Zhang L, Wang P, Feng Q, Wang N, Chen Z, Huang Y, Zheng W, Jiang X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017;9:e441–e441.
Article
CAS
Google Scholar
Zhang X, Li B, Luo X, Zhao W, Jiang J, Zhang C, Gao M, Chen X, Dong Y. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl Mater Interfaces. 2017;9:25481–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruponen M, Yla-Herttuala S, Urtti A. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta. 1999;1415:331–41.
Article
PubMed
CAS
Google Scholar
Anderson DG, Akinc A, Hossain N, Langer R. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther. 2005;11:426–34.
Article
PubMed
CAS
Google Scholar
Liang C, Li F, Wang L, Zhang Z-K, Wang C, He B, Li J, Chen Z, Shaikh AB, Liu J. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials. 2017;147:68–85.
Article
PubMed
CAS
Google Scholar
Salameh JW, Zhou L, Ward SM, Santa Chalarca CF, Emrick T, Figueiredo ML. Polymer-mediated gene therapy: recent advances and merging of delivery techniques. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1598.
Article
PubMed
Google Scholar
Wan T, Chen Y, Pan Q, Xu X, Kang Y, Gao X, Huang F, Wu C, Ping Y. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. J Control Release. 2020;322:236–47.
Article
PubMed
CAS
Google Scholar
Zhang Z, Wan T, Chen Y, Chen Y, Sun H, Cao T, Songyang Z, Tang G, Wu C, Ping Y. Cationic polymer-mediated CRISPR/Cas9 plasmid delivery for genome editing. Macromol Rapid Commun. 2019;40:1800068.
Article
Google Scholar
Wolfert MA, Dash PR, Nazarova O, Oupicky D, Seymour LW, Smart S, Strohalm J, Ulbrich K. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjug Chem. 1999;10:993–1004.
Article
PubMed
CAS
Google Scholar
D’Souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75.
Article
PubMed
CAS
Google Scholar
Kim YH, Park JH, Lee M, Kim YH, Park TG, Kim SW. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103:209–19.
Article
PubMed
CAS
Google Scholar
Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev. 2012;64:571–88.
Article
PubMed
CAS
Google Scholar
Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–9.
Article
PubMed
CAS
Google Scholar
Chen K, Jiang S, Hong Y, Li Z, Wu Y-L, Wu C. Cationic polymeric nanoformulation: recent advances in material design for CRISPR/Cas9 gene therapy. Prog Nat Sci. 2019;29:617–27.
Article
CAS
Google Scholar
Zhang H, Bahamondez-Canas TF, Zhang Y, Leal J, Smyth HD. PEGylated chitosan for nonviral aerosol and mucosal delivery of the CRISPR/Cas9 system in vitro. Mol Pharm. 2018;15:4814–26.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li L, He Z-Y, Wei X-W, Gao G-P, Wei Y-Q. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26:452–62.
Article
PubMed
CAS
Google Scholar
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.
Article
PubMed
PubMed Central
Google Scholar
Avila-Salas FN, González RI, Ríos PL, Araya-Durán I, Camarada MB. Effect of the generation of PAMAM dendrimers on the stabilization of gold nanoparticles. J Chem Inform Model. 2020;60:2966–76.
Article
CAS
Google Scholar
Islam MT, Shi X, Balogh L, Baker JR. HPLC separation of different generations of poly (amidoamine) dendrimers modified with various terminal groups. Anal Chem. 2005;77:2063–70.
Article
PubMed
CAS
Google Scholar
Kurbatov AO, Balabaev NK, Mazo MA, Kramarenko EY. Effects of generation number, spacer length and temperature on the structure and intramolecular dynamics of siloxane dendrimer melts: molecular dynamics simulations. Soft Matter. 2020;16:3792–805.
Article
PubMed
CAS
Google Scholar
Maiti PK, Çaǧın T, Wang G, Goddard WA. Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules. 2004;37:6236–54.
Article
CAS
Google Scholar
Pavan GM, Albertazzi L, Danani A. Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J Phys Chem B. 2010;114:2667–75.
Article
PubMed
CAS
Google Scholar
Sebby KB, Walter ED, Usselman RJ, Cloninger MJ, Singel DJ. End-group distributions of multiple generations of spin-labeled PAMAM dendrimers. J Phys Chem B. 2011;115:4613–20.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vinicius R, Ara D, Santos S, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimer. Molecules. 2018;23:2849.
Article
Google Scholar
Thanh VM, Nguyen TH, Tran TV, Ngoc UT, Ho MN, Nguyen TT, Chau YN, Tran NQ, Nguyen CK, Nguyen DH. Low systemic toxicity nanocarriers fabricated from heparin-mPEG and PAMAM dendrimers for controlled drug release. Mater Sci Eng C. 2018;82:291–8.
Article
CAS
Google Scholar
Yavuz B, Bozdağ Pehlivan S, Sümer Bolu B, Nomak Sanyal R, Vural İ, Ünlü N. Dexamethasone-PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. J Pharm Pharmacol. 2016;68:1010–20.
Article
PubMed
CAS
Google Scholar
Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery. J Pharm Sci. 2015;104:3814–23.
Article
PubMed
CAS
Google Scholar
Kretzmann JA, Ho D, Evans CW, Plani-Lam JH, Garcia-Bloj B, Mohamed AE, O’Mara ML, Ford E, Tan DE, Lister R. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci. 2017;8:2923–30.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5:eaaw8922.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wei S, Shao X, Liu Y, Xiong B, Cui P, Liu Z, Li Q. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. J Mater Chem B. 2022;10:1291–300.
Article
PubMed
CAS
Google Scholar
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller R. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B. 2000;18:301–13.
Article
CAS
Google Scholar
Nunes R, Araújo F, Tavares J, Sarmento B. Surface modification with polyethylene glycol enhances colorectal distribution and retention of nanoparticles. Eur J Pharm Biopharm. 2018. https://doi.org/10.1016/j.ejpb.2018.06.029.
Article
PubMed
Google Scholar
Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9:6996–7008.
Article
PubMed
CAS
Google Scholar
Ruiz A, Hernandez Y, Cabal C, Gonzalez E, Veintemillas-Verdaguer S, Martinez E, Morales M. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale. 2013;5:11400–8.
Article
PubMed
CAS
Google Scholar
Chen CL, Rosi NL. Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed. 2010;49:1924–42.
Article
CAS
Google Scholar
Huang H, Li J, Liao L, Li J, Wu L, Dong C, Lai P, Liu D. Poly (l-glutamic acid)-based star-block copolymers as pH-responsive nanocarriers for cationic drugs. Eur Polymer J. 2012;48:696–704.
Article
CAS
Google Scholar
Li Z, Chen Q, Qi Y, Liu Z, Hao T, Sun X, Qiao M, Ma X, Xu T, Zhao X. Rational design of multifunctional polymeric nanoparticles based on poly (L-histidine) and d-α-Vitamin E Succinate for reversing tumor multidrug resistance. Biomacromol. 2018;19:2595–609.
Article
CAS
Google Scholar
Liu B, Gao GH, Liu P, Yi HQ, Wei W, Ge ZC, Cai LT. A tunable pH-responsive nanomaterials for cancer delivery. Adv Mater Res. 2013;750–752:1476–9.
Article
Google Scholar
Lv S, Tang Z, Li M, Lin J, Song W, Liu H, Huang Y, Zhang Y, Chen X. Co-delivery of doxorubicin and paclitaxel by PEG-polypeptide nanovehicle for the treatment of non-small cell lung cancer. Biomaterials. 2014;35:6118–29.
Article
PubMed
CAS
Google Scholar
Shi C, He Y, Feng X, Fu D. ε-Polylysine and next-generation dendrigraft poly-l-lysine: chemistry, activity, and applications in biopharmaceuticals. J Biomater Sci Polym Ed. 2015;26:1343–56.
Article
PubMed
CAS
Google Scholar
Yi H, Liu P, Sheng N, Gong P, Ma Y, Cai L. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery. Nanoscale. 2016;8:5985–95.
Article
PubMed
CAS
Google Scholar
Zhang R, Zheng N, Song Z, Yin L, Cheng J. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials. 2014;35:3443–54.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou H, Lv S, Zhang D, Deng M, Zhang X, Tang Z, Chen X. A polypeptide based podophyllotoxin conjugate for the treatment of multi drug resistant breast cancer with enhanced efficiency and minimal toxicity. Acta Biomater. 2018;73:388–99.
Article
PubMed
CAS
Google Scholar
Yin L, Song Z, Qu Q, Kim KH, Zheng N, Yao C, Chaudhury I, Tang H, Gabrielson NP, Uckun FM, Cheng J. Supramolecular self-assembled nanoparticles mediate oral delivery of therapeutic TNF-α siRNA against systemic inflammation. Angew Chem Int Ed Engl. 2013;52:5757–61.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang HX, Song Z, Lao YH, Xu X, Gong J, Cheng D, Chakraborty S, Park JS, Li M, Huang D, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci USA. 2018;115:4903–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zakeri A, Kouhbanani MAJ, Beheshtkhoo N, Beigi V, Mousavi SM, Hashemi SAR, Karimi Zade A, Amani AM, Savardashtaki A, Mirzaei E, et al. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev Exp. 2018;9:1488497.
Article
PubMed
PubMed Central
Google Scholar
Pishavar E, Shafiei M, Mehri S, Ramezani M, Abnous K. The effects of polyethylenimine/DNA nanoparticle on transcript levels of apoptosis-related genes. Drug Chem Toxicol. 2017;40:406–9.
Article
PubMed
CAS
Google Scholar
Bahadur KR, Uludağ H. PEI and its derivatives for gene therapy. In: Narain R, editor. Polymers and nanomaterials for gene therapy. Amsterdam: Elsevier; 2016. p. 29–54.
Chapter
Google Scholar
Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, Baek JI, Kim WJ, Lee KY, Kim UK. Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomed Nanotechnol Biol Med. 2018;14:2095–102.
Article
CAS
Google Scholar
Wu Y, Wang W, Chen Y, Huang K, Shuai X, Chen Q, Li X, Lian G. The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomed. 2010;5:129.
Article
CAS
Google Scholar
Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K, Belic J, Jones DT, Tschida B, Moriarity B. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun. 2015;6:1–9.
Article
Google Scholar
Thaker PH, Brady WE, Lankes HA, Odunsi K, Bradley WH, Moore KN, Muller CY, Anwer K, Schilder RJ, Alvarez RD, Fracasso PM. A phase I trial of intraperitoneal GEN-1, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer, administered with pegylated liposomal doxorubicin in patients with recurrent or persistent epithelial ovarian, fallopian tube or primary peritoneal cancers: an NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2017;147:283–90.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liao H-W, Yau K-W. In vivo gene delivery in the retina using polyethylenimine. Biotechniques. 2007;42:285–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mendelsohn AR, Larrick JW. Preclinical reversal of atherosclerosis by FDA-approved compound that transforms cholesterol into an anti-inflammatory “prodrug.” Rejuvenation Res. 2016;19:252–5.
Article
PubMed
CAS
Google Scholar
Lai WF. Cyclodextrins in non-viral gene delivery. Biomaterials. 2014;35:401–11.
Article
PubMed
CAS
Google Scholar
Ping Y, Liu C, Zhang Z, Liu KL, Chen J, Li J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials. 2011;32:8328–41.
Article
PubMed
CAS
Google Scholar
Li J-M, Wang Y-Y, Zhang W, Su H, Ji L-N, Mao Z-W. Low-weight polyethylenimine cross-linked 2-hydroxypopyl-β-cyclodextrin and folic acid as an efficient and nontoxic siRNA carrier for gene silencing and tumor inhibition by VEGF siRNA. Int J Nanomed. 2013;8:2101.
Article
Google Scholar
Forrest ML, Gabrielson N, Pack DW. Cyclodextrin–polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng. 2005;89:416–23.
Article
PubMed
CAS
Google Scholar
Borrás T. Recent developments in ocular gene therapy. Exp Eye Res. 2003;76:643–52.
Article
PubMed
Google Scholar
Gomes dos Santos AL, Bochot A, Tsapis N, Artzner F, Bejjani RA, Thillaye-Goldenberg B, De Kozak Y, Fattal E, Behar-Cohen F. Oligonucleotide-polyethylenimine complexes targeting retinal cells: structural analysis and application to anti-TGFbeta-2 therapy. Pharm Res. 2006;23:770–81.
Article
PubMed
CAS
Google Scholar
Pitkänen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res. 2003;20:576–83.
Article
PubMed
Google Scholar
Reinisalo M, Urtti A, Honkakoski P. Freeze-drying of cationic polymer DNA complexes enables their long-term storage and reverse transfection of post-mitotic cells. J Control Release. 2006;110:437–43.
Article
PubMed
CAS
Google Scholar
Huang H, Liu M, Jiang R, Chen J, Mao L, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery. J Colloid Interface Sci. 2018;513:198–204.
Article
PubMed
CAS
Google Scholar
Jung H-S, Cho K-J, Ryu S-J, Takagi Y, Roche PA, Neuman KC. Biocompatible fluorescent nanodiamonds as multifunctional optical probes for latent fingerprint detection. ACS Appl Mater Interfaces. 2020;12:6641–50.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q. Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials. 2010;31:8410–8.
Article
PubMed
CAS
Google Scholar
van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14:1703838.
Article
Google Scholar
Woodhams B, Ansel-Bollepalli L, Surmacki J, Knowles H, Maggini L, De Volder M, Atatüre M, Bohndiek S. Graphitic and oxidised high pressure high temperature (HPHT) nanodiamonds induce differential biological responses in breast cancer cell lines. Nanoscale. 2018;10:12169–79.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu Y, Li J, Li W, Zhang Y, Yang X, Chen N, Sun Y, Zhao Y, Fan C, Huang Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2012;2:302.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chu Z, Zhang S, Zhang B, Zhang C, Fang CY, Rehor I, Cigler P, Chang HC, Lin G, Liu R, Li Q. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep. 2014;4:4495.
Article
PubMed
PubMed Central
Google Scholar
Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, Lin G, Li Q. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep. 2015;5:11661.
Article
PubMed
PubMed Central
Google Scholar
Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM, Dai L. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111:2–7.
Article
PubMed
CAS
Google Scholar
Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci USA. 2007;104:727–32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chu HL, Chen HW, Tseng SH, Hsu MH, Ho LP, Chou FH, Li MP, Chang YC, Chen PH, Tsai LY, et al. Development of a growth-hormone-conjugated nanodiamond complex for cancer therapy. ChemMedChem. 2014;9:1023–9.
Article
PubMed
CAS
Google Scholar
Mochalin VN, Pentecost A, Li XM, Neitzel I, Nelson M, Wei C, He T, Guo F, Gogotsi Y. Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol Pharm. 2013;10:3728–35.
Article
PubMed
CAS
Google Scholar
Jung HS, Neuman KC. Surface modification of fluorescent nanodiamonds for biological applications. Nanomaterials (Basel). 2021;11:153.
Article
PubMed
CAS
Google Scholar
Yang TC, Chang CY, Yarmishyn AA, Mao YS, Yang YP, Wang ML, Hsu CC, Yang HY, Hwang DK, Chen SJ, et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020;101:484–94.
Article
PubMed
CAS
Google Scholar
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.
Article
PubMed
CAS
Google Scholar
Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev. 2019;144:112–32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater. 2019;31:1805730.
Article
Google Scholar
Eidi H, David M-O, Crépeaux G, Henry L, Joshi V, Berger M-H, Sennour M, Cadusseau J, Gherardi RK, Curmi PA. Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC Med. 2015;13:1–13.
Article
CAS
Google Scholar
Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10:3692–9.
Article
PubMed
CAS
Google Scholar
Moore L, Yang J, Lan TTH, Osawa E, Lee DK, Johnson WD, Xi J, Chow EK, Ho D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano. 2016;10:7385–400.
Article
PubMed
CAS
Google Scholar
Balfourier A, Luciani N, Wang G, Lelong G, Ersen O, Khelfa A, Alloyeau D, Gazeau F, Carn F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci USA. 2020;117:103–13.
Article
PubMed
CAS
Google Scholar
Bernard K, Thannickal VJ. NADPH oxidase inhibition in fibrotic pathologies. Antioxid Redox Signal. 2020;33:455–79.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.
Article
PubMed
CAS
PubMed Central
Google Scholar
Castaneda MT, Merkoçi A, Pumera M, Alegret S. Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosens Bioelectron. 2007;22:1961–7.
Article
PubMed
CAS
Google Scholar
da Silva AB, Rufato KB, de Oliveira AC, Souza PR, da Silva EP, Muniz EC, Vilsinski BH, Martins AF. Composite materials based on chitosan/gold nanoparticles: from synthesis to biomedical applications. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2020.06.113.
Article
PubMed
Google Scholar
Fan J, Cheng Y, Sun M. Functionalized gold nanoparticles: synthesis, properties and biomedical applications. Chem Rec. 2020;20:1474–504.
Article
PubMed
CAS
Google Scholar
Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1:31–63.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1609.
Article
PubMed
Google Scholar
Glass Z, Li Y, Xu Q. Nanoparticles for CRISPR–Cas9 delivery. Nat Biomed Eng. 2017;1:854–5.
Article
PubMed
PubMed Central
Google Scholar
Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–6.
Article
CAS
Google Scholar
Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed. 2018;57:1491–6.
Article
CAS
Google Scholar
Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, Wang L, Tang R, Feng Q, Hamada Y, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl. 2018;57:1491–6.
Article
PubMed
CAS
Google Scholar
Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, Jiang X. Genome editing for cancer therapy: delivery of Cas9 Protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Adv Sci (Weinh). 2017;4:1700175.
Article
PubMed
Google Scholar
Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang WN, Ravi N, Biswas P. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro. 2016;37:61–9.
Article
PubMed
Google Scholar
Söderstjerna E, Bauer P, Cedervall T, Abdshill H, Johansson F, Johansson UE. Silver and gold nanoparticles exposure to in vitro cultured retina—studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity. PLoS ONE. 2014;9: e105359.
Article
PubMed
PubMed Central
Google Scholar
Song HB, Wi JS, Jo DH, Kim JH, Lee SW, Lee TG, Kim JH. Intraocular application of gold nanodisks optically tuned for optical coherence tomography: inhibitory effect on retinal neovascularization without unbearable toxicity. Nanomedicine. 2017;13:1901–11.
Article
PubMed
CAS
Google Scholar
Kim JH, Kim JH, Kim KW, Kim MH, Yu YS. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology. 2009;20: 505101.
Article
PubMed
Google Scholar
Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano Micro Lett. 2018;10:53.
Article
Google Scholar
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9:9243–57.
Article
PubMed
CAS
Google Scholar
Lammel T, Boisseaux P, Fernández-Cruz ML, Navas JM. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol. 2013;10:27.
Article
PubMed
CAS
PubMed Central
Google Scholar
Linares J, Matesanz MC, Vila M, Feito MJ, Gonçalves G, Vallet-Regí M, Marques PA, Portolés MT. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl Mater Interfaces. 2014;6:13697–706.
Article
PubMed
CAS
Google Scholar
Burnett M, Abuetabh Y, Wronski A, Shen F, Persad S, Leng R, Eisenstat D, Sergi C. Graphene oxide nanoparticles induce apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out osteosarcoma cells. J Cancer. 2020;11:5007.
Article
PubMed
CAS
PubMed Central
Google Scholar
Carboni V, Maaliki C, Alyami M, Alsaiari S, Khashab N. Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery. Adv Ther. 2019;2:1800085.
Article
CAS
Google Scholar
Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130:10876–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z. PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mater Interfaces. 2012;4:6317–23.
Article
PubMed
CAS
Google Scholar
Yue H, Zhou X, Cheng M, Xing D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale. 2018;10:1063–71.
Article
PubMed
CAS
Google Scholar