Bray GA, Heisel WE, Afshin A, Jensen MD, Dietz WH, Long M, et al. The Science of Obesity management: an endocrine society scientific statement. Endocr Rev. 2018;39(2):79–132.
Article
PubMed
PubMed Central
Google Scholar
Kennett GA, Clifton PG. New approaches to the pharmacological treatment of obesity: can they break through the efficacy barrier? Pharmacol Biochem Behav. 2010;97(1):63–83.
Article
PubMed
CAS
Google Scholar
Fasipe O. Recent advances and current trend in the pharmacotherapy of obesity. Arch Med Heal Sci. 2018;6(1):99.
Article
Google Scholar
Apovian CM, Riffenburg KM. Perspectives on the global obesity epidemic. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):307–9.
Article
PubMed
Google Scholar
Leitner DR, Frühbeck G, Yumuk V, Schindler K, Micic D, Woodward E, et al. Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies—easo can lead the way. Obes Facts. 2017;10(5):483–92.
Article
PubMed
PubMed Central
Google Scholar
Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest. 2007;117(9):2362–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Christiaens V, Lijnen HR. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. 2010;318(1–2):2–9.
Article
PubMed
CAS
Google Scholar
Lee JJ, Britton KA, Pedley A, Massaro JM, Speliotes EK, Murabito JM, et al. Adipose tissue depots and their cross-sectional associations with circulating biomarkers of metabolic regulation. J Am Heart Assoc. 2016;5:5.
Google Scholar
Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.
Article
PubMed
CAS
Google Scholar
Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003;52(7):1779–855.
Article
PubMed
CAS
Google Scholar
Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10(6):625–32.
Article
PubMed
CAS
Google Scholar
Xue Y, Xu X, Zhang X-Q, Farokhzad OC, Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci USA. 2016;113(20):5552–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hossen MN, Kajimoto K, Akita H, Hyodo M, Harashima H. Vascular-targeted nanotherapy for obesity: unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J Control Release. 2012;163(2):101–10.
Article
PubMed
CAS
Google Scholar
Hossen MN, Kajimoto K, Tatsumi R, Hyodo M, Harashima H. Comparative assessments of crucial factors for a functional ligand-targeted nanocarrier. J Drug Target. 2014;22(7):600–9.
Article
PubMed
CAS
Google Scholar
Thovhogi N, Sibuyi N, Meyer M, Onani M, Madiehe A. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats. J Nanoparticle Res. 2015;17(2):112.
Article
CAS
Google Scholar
Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, et al. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano. 2017;11(9):9223–300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang C, Cano-Vega MA, Yue F, Kuang L, Narayanan N, Uzunalli G, et al. Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Mol Ther. 2017;25(7):1718–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee JH, Jeong HS, Lee DH, Beack S, Kim T, Lee G-H, et al. Targeted hyaluronate–hollow gold nanosphere conjugate for anti-obesity photothermal lipolysis. ACS Biomater Sci Eng. 2017;3(12):3646–53.
Article
CAS
PubMed
Google Scholar
Sheng W, Alhasan AH, DiBernardo G, Almutairi KM, Rubin JP, DiBernardo BE, et al. Gold nanoparticle-assisted selective photothermolysis of adipose tissue (NanoLipo). Plast Reconstr Surg Glob Open. 2014;2(12):e283.
Article
PubMed
Google Scholar
World Health Organization (WHO). Global health observatory data repository. Prevalence of obesity among adults, BMI ≥ 30, age-standardized. Estimates by WHO region. 2016. https://apps.who.int/gho/data/view.main.REGION2480A?lang=en. Accessed 21 Dec 2018
Kyle TK, Dhurandhar EJ, Allison DB. Regarding obesity as a disease: evolving policies and their implications. Endocrinol Metab Clin North Am. 2016;45(3):511–20.
Article
PubMed
PubMed Central
Google Scholar
Katzung BG, Trevor AJ. Basic and clinical pharmacology. 14th ed, McGraw-Hill Education/Medical
Giordano A, Frontini A, Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov. 2016;15(6):405–24.
Article
PubMed
CAS
Google Scholar
Kim GW, Lin JE, Blomain ES, Waldman SA. Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther. 2013;95(1):53–66.
Article
PubMed
CAS
Google Scholar
Derosa G, Maffioli P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin Drug Saf. 2012;11(3):459–71.
Article
PubMed
CAS
Google Scholar
Saunders KH, Umashanker D, Igel LI, Kumar RB, Aronne LJ. Obesity pharmacotherapy. Med Clin North Am. 2018;102(1):135–48.
Article
PubMed
Google Scholar
Bessesen DH, van Gaal LF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6(3):237–48.
Article
PubMed
Google Scholar
Velazquez A, Apovian CM. Updates on obesity pharmacotherapy. Ann N Y Acad Sci. 2018;1411(1):106–19.
Article
PubMed
Google Scholar
Bray GA. A concise review on the therapeutics of obesity. Nutrition. 2000;16(10):953–60.
Article
PubMed
CAS
Google Scholar
Harp JB. Orlistat for the long-term treatment of obesity. Drugs Today (Barc). 1999;35(2):139–45.
Article
PubMed
CAS
Google Scholar
Ballinger A, Peikin SR. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol. 2002;440(2–3):109–17.
Article
PubMed
CAS
Google Scholar
Kushner RF, Apovian CM, Fujioka K. Obesity consults–comprehensive obesity management in 2013: understanding the shifting paradigm. Obesity (Silver Spring). 2013;21(2):3–13.
Google Scholar
Mehta A, Marso SP, Neeland IJ. Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract. 2017;3(1):3–14.
Article
PubMed
CAS
Google Scholar
Cefalu WT, Bray GA, Home PD, Garvey WT, Klein S, Pi-Sunyer FX, et al. Advances in the science, treatment, and prevention of the disease of obesity: reflections from a diabetes care editors’ expert forum. Diabetes Care. 2015;38(8):1567–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee P, Greenfield JR, Ho KKY, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299(4):601–6.
Article
CAS
Google Scholar
Kwok KHM, Lam KSL, Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med. 2016;48(3):215.
Article
CAS
Google Scholar
Dizdar O, Alyamaç E. Obesity: an endocrine tumor? Med Hypotheses. 2004;63(5):790–2.
Article
PubMed
Google Scholar
Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48(5):401–13.
Article
PubMed
CAS
Google Scholar
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63.
Article
PubMed
CAS
Google Scholar
Mulya A, Kirwan JP. Brown and Beige adipose tissue: therapy for obesity and its comorbidities? Endocrinol Metab Clin North Am. 2016;45(3):605–21.
Article
PubMed
PubMed Central
Google Scholar
Peng X-R, Gennemark P, Omahony G, Bartesaghi S. Unlock the thermogenic potential of adipose tissue: pharmacological modulation and implications for treatment of diabetes and obesity. Front Endocrinol (Lausanne). 2015;6:174.
Article
PubMed
PubMed Central
Google Scholar
Whittle A, Relat-Pardo J, Vidal-Puig A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol Sci. 2013;34(6):347–55.
Article
PubMed
CAS
Google Scholar
Kiefer FW. The significance of beige and brown fat in humans. Endocr Connect. 2017;6(5):R70–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem. 2019;64:1–12.
Article
PubMed
CAS
Google Scholar
Blondin DP, Labbé SM, Turcotte EE, Haman F, Richard D, Carpentier AC. A critical appraisal of brown adipose tissue metabolism in humans. Clin Lipidol. 2015;10(3):259–80.
Article
CAS
Google Scholar
Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V, Buzadzic B, et al. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol. 2015;593(15):3267–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123(8):3395–403.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8.
Article
Google Scholar
Nassir F, Rector RS, Hammoud GM, Ibdah JA. pathogenesis and prevention of hepatic steatosis. Gastroenterol Hepatol (N Y). 2015;11(3):167–75.
Google Scholar
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyamoto S, Sharma K. Adipokines protecting CKD. Nephrol Dial Transplant. 2013;28(4):15–22.
Google Scholar
Hainer V, Toplak H, Mitrakou A. Treatment modalities of obesity: what fits whom? Diabetes Care. 2008;31(Supplement 2):S269–S277277.
Article
PubMed
CAS
Google Scholar
Barnhart KF, Christianson DR, Hanley PW, Driessen WHP, Bernacky BJ, Baze WB, et al. A Peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med. 2011;3(108):108ra112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao Y. Angiogenesis as a therapeutic target for obesity and metabolic diseases. Chem Immunol Allergy. 2013;99:170–9.
Article
PubMed
CAS
Google Scholar
Lemoine AY, Ledoux S, Larger E. Adipose tissue angiogenesis in obesity. Thromb Haemost. 2013;110(10):661–9.
Article
PubMed
CAS
Google Scholar
Ande SR, Xu YXZ, Mishra S. Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther. 2017;2:17059.
Article
PubMed
PubMed Central
Google Scholar
Sibuyi NRS, Meyer M, Onani MO, Skepu A, Madiehe AM. Vascular targeted nanotherapeutic approach for obesity treatment. Int J Nanomed. 2018;13:1.
Article
Google Scholar
Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF. Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci Nanosci Nanotechnol. 2014;5(4):043001.
Article
CAS
Google Scholar
Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13.
Google Scholar
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–55.
PubMed
PubMed Central
Google Scholar
Masserini M. Nanoparticles for Brain Drug Delivery. ISRN Biochem. 2013;2013:1–18.
Article
CAS
Google Scholar
Sibuyi NRS, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, et al. Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine. 2017;12(14):1631–45.
Article
CAS
Google Scholar
Thovhogi N, Sibuyi NRS, Onani MO, Meyer M, Madiehe AM. Peptide-functionalized quantum dots for potential applications in the imaging and treatment of obesity. Int J Nanomed. 2018;13:1.
Article
Google Scholar
Bi P, Shan T, Liu W, Yue F, Yang X, Liang X-R, et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014;20(8):911–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Igawa Y, Aizawa N, Homma Y. Beta3-adrenoceptor agonists: possible role in the treatment of overactive bladder. Korean J Urol. 2010;51(12):811.
Article
PubMed
PubMed Central
Google Scholar
Fazio C, Ricciardiello L. Inflammation and Notch signaling: a crosstalk with opposite effects on tumorigenesis. Cell Death Dis. 2016;7(12):e2515.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miranda K, Yang X, Bam M, Murphy EA, Nagarkatti PS, Nagarkatti M. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes. 2018;42(6):1140–50.
Article
CAS
Google Scholar
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines. 2018;6(3):91.
Article
PubMed Central
CAS
Google Scholar
Biagi M, Bertelli AAE. Wine, alcohol and pills: what future for the French paradox? Life Sci. 2015;131:19–22.
Article
PubMed
CAS
Google Scholar
US National Library of Medicine. Resveratrol and the metabolic syndrome. 2018. https://clinicaltrials.gov/ct2/show/NCT01714102. Accessed 21 Dec 2018
Wang S, Zhu M-J, Du M. Prevention of obesity by dietary resveratrol: how strong is the evidence? Expert Rev Endocrinol Metab. 2015;10(6):561–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernández-Quintela A, Milton-Laskibar I, González M, Portillo MP. Antiobesity effects of resveratrol: which tissues are involved? Ann N Y Acad Sci. 2017;1403(1):118–31.
Article
PubMed
CAS
Google Scholar
Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes (Lond). 2015;39(6):967–76.
Article
PubMed Central
CAS
Google Scholar
Baek S-H, Chung H-J, Lee H-K, D’Souza R, Jeon Y, Kim H-J, et al. Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci Rep. 2014;4(1):3879.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zu Y, Wang S. Targeted delivery of resveratrol to mouse white adipose tissue using adipose stromal cells (ASC) targeted nanoparticles. FASEB J. 2017;31:1.
Article
CAS
Google Scholar
Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22(2):277.
Article
PubMed Central
CAS
Google Scholar
Zu Y, Overby H, Ren G, Fan Z, Zhao L, Wang S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B Biointerfaces. 2018;164:414–23.
Article
PubMed
CAS
Google Scholar
Wan S, Zhang L, Quan Y, Wei K. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci. 2018;5(11):181457.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh G, Pai RS. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv. 2015;22(4):522–30.
Article
PubMed
CAS
Google Scholar
Derosa G, D’Angelo A, Ragonesi PD, Ciccarelli L, Piccinni MN, Pricolo F, et al. Metformin-pioglitazone and metformin-rosiglitazone effects on non-conventional cardiovascular risk factors plasma level in type 2 diabetic patients with metabolic syndrome. J Clin Pharm Ther. 2006;31(4):375–83.
Article
PubMed
CAS
Google Scholar
Malinowski JM, Bolesta S. Rosiglitazone in the treatment of type 2 diabetes mellitus: a critical review. Clin Ther. 2000;22(10):1151–68.
Article
PubMed
CAS
Google Scholar
Pérez MJ, Quintanilla RA. Therapeutic actions of the thiazolidinediones in alzheimer’s disease. PPAR Res. 2015;2015:1–8.
Article
CAS
Google Scholar
Johnson JA, Trasino SE, Ferrante AW, Vasselli JR. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats. Obesity (Silver Spring). 2007;15(11):2653–63.
Article
CAS
Google Scholar
Mulder P, Morrison MC, Verschuren L, Liang W, van Bockel JH, Kooistra T, et al. Reduction of obesity-associated white adipose tissue inflammation by rosiglitazone is associated with reduced non-alcoholic fatty liver disease in LDLr-deficient mice. Sci Rep. 2016;6(1):31542.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim K-T, Lee J, Kim M-H, Park J-H, Lee J-Y, Song J-H, et al. Novel reverse electrodialysis-driven iontophoretic system for topical and transdermal delivery of poorly permeable therapeutic agents. Drug Deliv. 2017;24(1):1204–15.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jung HS, Kim KS, Yun SH, Hahn SK. Enhancing the transdermal penetration of nanoconstructs: could hyaluronic acid be the key? Nanomedicine (Lond). 2014;9(6):743–5.
Article
PubMed
CAS
Google Scholar
Yang J-A, Kim E-S, Kwon JH, Kim H, Shin JH, Yun SH, et al. Transdermal delivery of hyaluronic acid – human growth hormone conjugate. Biomaterials. 2012;33(25):5947–54.
Article
PubMed
CAS
Google Scholar
Witting M, Boreham A, Brodwolf R, Vávrová K, Alexiev U, Friess W, et al. Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm. 2015;12(5):1391–401.
Article
PubMed
CAS
Google Scholar
Pattani VP, Shah J, Atalis A, Sharma A, Tunnell JW. Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy. J Nanoparticle Res. 2015;17(1):20.
Article
CAS
Google Scholar
Ali MRK, Rahman MA, Wu Y, Han T, Peng X, Mackey MA, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci USA. 2017;114(15):E3110–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mooney R, Roma L, Zhao D, Van Haute D, Garcia E, Kim SU, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8(12):12450–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C. 2016;120(9):4691–716.
Article
CAS
Google Scholar
Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(4):e1449.
Article
CAS
Google Scholar
Zhao R, Zheng G, Fan L, Shen Z, Jiang K, Guo Y, et al. Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy. Acta Biomater. 2018;70:197–21010.
Article
PubMed
CAS
Google Scholar
Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1(1):13–28.
Article
Google Scholar
Mackey MA, Ali MRK, Austin LA, Near RD, El-Sayed MA. The Most effective gold nanorod size for plasmonic photothermal therapy: theory and In Vitro Experiments. J Phys Chem B. 2014;118(5):1319–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, et al. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano. 2018;12(9):9279–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ali MRK, Ibrahim IM, Ali HR, Selim SA, El-Sayed MA. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. Int J Nanomed. 2016;11:4849–63.
Article
CAS
Google Scholar
Pansare VJ, Hejazi S, Faenza WJ, Prudhomme RK. Review of long-wavelength optical and nir imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater. 2012;24(5):812–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wanner M, Avram M, Gagnon D, Mihm MC, Zurakowski D, Watanabe K, et al. Effects of non-invasive, 1,210 nm laser exposure on adipose tissue: results of a human pilot study. Lasers Surg Med. 2009;41(6):401–7.
Article
PubMed
Google Scholar
Anderson RR, Farinelli W, Laubach H, Manstein D, Yaroslavsky AN, Gubeli J, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38(10):913–9.
Article
PubMed
Google Scholar
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–644.
PubMed
CAS
Google Scholar
Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yao VJ, D’Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, et al. Ligand-targeted theranostic nanomedicines against cancer. J Control Release. 2016;240:267–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of fda-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.
Article
PubMed
CAS
Google Scholar
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.
Article
PubMed
CAS
Google Scholar
Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.
Article
PubMed
CAS
Google Scholar
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.
Article
PubMed
CAS
Google Scholar
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7(8):657–67.
Article
PubMed
CAS
Google Scholar
Sengupta S, Sasisekharan R. Exploiting nanotechnology to target cancer. Br J Cancer. 2007;96(9):1315–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaufman RC. Lipid nanoparticle compositions and methods as carriers of cannabinoids in standardized precision-metered dosage forms. 2018. https://patents.justia.com/inventor/richard-clark-kaufman. Accessed 21 Dec 2018.
Siissalo S, de Waard H, de Jager MH, Hayeshi R, Frijlink HW, Hinrichs WLJ, et al. Nanoparticle formulation of a poorly soluble cannabinoid receptor 1 antagonist improves absorption by rat and human intestine. Drug Metab Dispos. 2013;41(8):1557–655.
Article
PubMed
CAS
Google Scholar
Dolenc A, Govedarica B, Dreu R, Kocbek P, Srcic S, Kristl J. Nanosized particles of orlistat with enhanced in vitro dissolution rate and lipase inhibition. Int J Pharm. 2010;396(1–2):149–55.
Article
PubMed
CAS
Google Scholar
Sangwai M, Sardar S, Vavia P. Nanoemulsified orlistat-embedded multi-unit pellet system (MUPS) with improved dissolution and pancreatic lipase inhibition. Pharm Dev Technol. 2014;19(1):31–41.
Article
PubMed
CAS
Google Scholar
Chen Y-L, Zhu S, Zhang L, Feng P-J, Yao X-K, Qian C-G, et al. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity. Nanoscale. 2016;8(6):3368–75.
Article
PubMed
CAS
Google Scholar
Esposito E, Drechsler M, Cortesi R, Nastruzzi C. Encapsulation of cannabinoid drugs in nanostructured lipid carriers. Eur J Pharm Biopharm. 2016;102:87–91.
Article
PubMed
CAS
Google Scholar
Yang J, Alvebratt C, Zhang P, Torre T, Strømme M, Bergström CAS, et al. Enhanced release of poorly water-soluble drugs from synergy between mesoporous magnesium carbonate and polymers. Int J Pharm. 2017;525(1):183–90.
Article
PubMed
CAS
Google Scholar
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9(4):12.
Article
PubMed Central
CAS
Google Scholar