Singh D, Vaccarella S, Gini A, De Paula Silva N, Steliarova-Foucher E, Bray F. Global patterns of Hodgkin lymphoma incidence and mortality in 2020 and a prediction of the future burden in 2040. Int J Cancer 2022; 150(12):1941–1947.
Article
CAS
PubMed
Google Scholar
Bjornmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging bio-nano science and cancer nanomedicine. ACS Nano. 2017;11(10):9594–613.
Article
CAS
PubMed
Google Scholar
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20–37.
Article
CAS
PubMed
Google Scholar
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179–191.
Article
CAS
PubMed
Google Scholar
Briolay T, Petithomme T, Fouet M, Nguyen-Pham N, Blanquart C, Boisgerault N. Delivery of cancer therapies by synthetic and bio-inspired nanovectors. Mol Cancer 2021; 20(1): 55.
Article
PubMed
PubMed Central
Google Scholar
Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release 2018; 271: 60–73.
Article
CAS
PubMed
Google Scholar
Kubiak T. Polymeric capsules and micelles as promising carriers of anticancer drugs. Polim Med 2022.
Jain A. Advances in tumor targeted liposomes. Curr Mol Med. 2018;18(1):44–57.
Article
CAS
PubMed
Google Scholar
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12.
Article
PubMed Central
CAS
Google Scholar
Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, Rizzolio F. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem. 2018;25(34):4269–303.
Article
CAS
PubMed
Google Scholar
Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine 2016; 12(2): 317–332.
Article
CAS
PubMed
Google Scholar
Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190: 64–83.
Article
CAS
PubMed
Google Scholar
Chen K, Zhang Y, Zhu L, Chu H, Shao X, Asakiya C, Huang K, Xu W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J Control Release 2022; 341: 869–891.
Article
CAS
PubMed
Google Scholar
Qian XL, Li J, Wei R, Lin H, Xiong LX. Internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy. Curr Pharm Des. 2018;24(15):1639–51.
Article
PubMed
CAS
Google Scholar
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Control Release. 2020;320:180–200.
Article
CAS
PubMed
Google Scholar
Oh JY, Kim HS, Palanikumar L, Go EM, Jana B, Park SA, Kim HY, Kim K, Seo JK, Kwak SK, Kim C, Kang S, Ryu JH. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun 2018; 9(1): 4548.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Wang D, Duan Y, Zhou Z, Gao W, Zhang L. Cellular nanosponges for biological neutralization. Adv Mater. 2021;34(13): e2107719.
Article
CAS
Google Scholar
Zhu M, Li S, Li S, Wang H, Xu J, Wang Y, Liang G. Strategies for engineering exosomes and their applications in drug delivery. J Biomed Nanotechnol. 2021;17(12):2271–97.
Article
CAS
PubMed
Google Scholar
Rohovie MJ, Nagasawa M, Swartz JR. Virus-like particles: next-generation nanoparticles for targeted therapeutic delivery. Bioeng Transl Med. 2017;2(1):43–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: a new era of cancer therapy. J Control Release. 2021;338:1–7.
Article
CAS
PubMed
Google Scholar
Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics 2020; 10(4): 1960–1980.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu M, Huang L. Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Adv Drug Deliv Rev 2022; 183: 114137.
Article
CAS
PubMed
Google Scholar
Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35: 40–47.
Article
PubMed
CAS
Google Scholar
Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840.
Article
CAS
PubMed Central
Google Scholar
Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 2015; 163(1): 39–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med 2015; 21(5): 431–439.
Article
CAS
PubMed
Google Scholar
Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 2019; 19(2): 65–81.
Article
CAS
PubMed
Google Scholar
Alteri E, Guizzaro L. Be open about drug failures to speed up research. Nature 2018; 563(7731): 317–319.
Article
CAS
PubMed
Google Scholar
Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 2012; 30(5): 434–439.
Article
CAS
PubMed
Google Scholar
Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 2012; 164(2): 192–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 2010; 148(1): 3–15.
Article
CAS
PubMed
Google Scholar
Stylianopoulos T, Munn LL, Jain RK. Reengineering the tumor vasculature: improving drug delivery and efficacy. Trends Cancer. 2018;4(4):258–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heldin CH, Rubin K, Pietras K, Ostman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004; 4(10): 806–813.
Article
CAS
PubMed
Google Scholar
Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 2015; 6(11): 9140–9159.
Article
PubMed
PubMed Central
Google Scholar
Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer 2018; 18(7): 407–418.
Article
CAS
PubMed
Google Scholar
Ching T, Toh YC, Hashimoto M, Zhang YS. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci 2021; 42(9): 715–728.
Article
CAS
PubMed
Google Scholar
Low LA, Mummery C, Berridge BR, Austin CP, Tagle DA. Organs-on-chips: into the next decade. Nat Rev Drug Discov 2021; 20(5): 345–361.
Article
CAS
PubMed
Google Scholar
Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019; 19(3): 369–386.
Article
CAS
PubMed
Google Scholar
Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol 2014; 32(8): 760–772.
Article
CAS
PubMed
Google Scholar
Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010; 328(5986): 1662–1668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdalkader R, Kamei KI. Multi-corneal barrier-on-a-chip to recapitulate eye blinking shear stress forces. Lab Chip 2020; 20(8): 1410–1417.
Article
CAS
PubMed
Google Scholar
Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 2016; 113(1): E7-15.
PubMed
Google Scholar
Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016; 8(1): 014101.
Article
PubMed
CAS
Google Scholar
Ma LD, Wang YT, Wang JR, Wu JL, Meng XS, Hu P, Mu X, Liang QL, Luo GA. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 2018; 18(17): 2547–2562.
Article
CAS
PubMed
Google Scholar
Kamei KI, Yoshioka M, Terada S, Tokunaga Y, Chen Y. Three-dimensional cultured liver-on-a-chip with mature hepatocyte-like cells derived from human pluripotent stem cells. Biomed Microdevices. 2019;21(3):73.
Article
PubMed
CAS
Google Scholar
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110: 45–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Annabi N, Selimovic S, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A. Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 2013; 13(18): 3569–3577.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. Kidney-on-a-chip: untapped opportunities. Kidney Int 2018; 94(6): 1073–1086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim JJ, Lee JL, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Converg 2022; 9(1): 8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, Cronce M, Huffstater T, Jeanty SSF, Ingram M, Chalkiadaki A, Benson Chou D, Marquez S, Delahanty A, Jalili-Firoozinezhad S, Milton Y, Sontheimer-Phelps A, Swenor B, Levy O, Parker KK, Przekwas A, Ingber DE. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat Biomed Eng 2020; 4(4): 421–436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamei K, Kato Y, Hirai Y, Ito S, Satoh J, Oka A, Tsuchiya T, Chen Y, Tabata O. Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. Rsc Advances 2017; 7(58): 36777–36786.
Article
CAS
Google Scholar
Huang K, Boerhan R, Liu C, Jiang G. Nanoparticles penetrate into the multicellular spheroid-on-chip: effect of surface charge, protein corona, and exterior flow. Mol Pharm. 2017;14(12):4618–27.
Article
CAS
PubMed
Google Scholar
Wang HF, Ran R, Liu Y, Hui Y, Zeng B, Chen D, Weitz DA, Zhao CX. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. ACS Nano. 2018;12(11):11600–9.
Article
CAS
PubMed
Google Scholar
Carvalho MR, Barata D, Teixeira LM, Giselbrecht S, Reis RL, Oliveira JM, Truckenmuller R, Habibovic P. Colorectal tumor-on-a-chip system: a 3D tool for precision onco-nanomedicine. Sci Adv. 2019;5(5):eaaw1317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Kim S, Koo DJ, Yu J, Cho H, Lee H, Song JM, Kim SY, Min DH, Jeon NL. 3D microfluidic platform and tumor vascular mapping for evaluating anti-angiogenic RNAi-based nanomedicine. ACS Nano. 2021;15(1):338–50.
Article
CAS
PubMed
Google Scholar
Zhuang J, Zhang J, Wu M, Zhang Y. A dynamic 3D tumor spheroid chip enables more accurate nanomedicine uptake evaluation. Adv Sci (Weinh). 2019;6(22):1901462.
Article
CAS
Google Scholar
Fang G, Lu H, Al-Nakashli R, Chapman R, Zhang Y, Ju LA, Lin G, Stenzel MH, Jin D. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication. 2021;14(1): 015006.
Article
Google Scholar
Ran R, Wang HF, Hou F, Liu Y, Hui Y, Petrovsky N, Zhang F, Zhao CX. A microfluidic tumor-on-a-chip for assessing multifunctional liposomes’ tumor targeting and anticancer efficacy. Adv Healthc Mater. 2019;8(8):e1900015.
Article
PubMed
CAS
Google Scholar
Yang Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H. Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip 2015; 15(3): 735–744.
Article
CAS
PubMed
Google Scholar
Kohl Y, Biehl M, Spring S, Hesler M, Ogourtsov V, Todorovic M, Owen J, Elje E, Kopecka K, Moriones OH, Bastus NG, Simon P, Dubaj T, Runden-Pran E, Puntes V, William N, von Briesen H, Wagner S, Kapur N, Mariussen E, Nelson A, Gabelova A, Dusinska M, Velten T, Knoll T. Microfluidic in vitro platform for (nano) safety and (nano) drug efficiency screening. Small. 2021;17(15):e2006012.
Article
PubMed
CAS
Google Scholar
Lee J, Mehrotra S, Zare-Eelanjegh E, Rodrigues RO, Akbarinejad A, Ge D, Amato L, Kiaee K, Fang Y, Rosenkranz A, Keung W, Mandal BB, Li RA, Zhang T, Lee H, Dokmeci MR, Zhang YS, Khademhosseini A, Shin SR. A heart-breast cancer-on-a-chip platform for disease modeling and monitoring of cardiotoxicity induced by cancer chemotherapy. Small. 2021;17(15):e2004258.
Article
PubMed
CAS
Google Scholar
Baek S, Yu SE, Deng YH, Lee YJ, Lee DG, Kim S, Yoon S, Kim HS, Park J, Lee CH, Lee JB, Kong HJ, Kang SG, Shin YM, Sung HJ. Quenching epigenetic drug resistance using antihypoxic microparticles in glioblastoma patient-derived chips. Adv Healthc Mater. 2021;11(8): e2102226.
Article
CAS
Google Scholar
Agarwal P, Wang H, Sun M, Xu J, Zhao S, Liu Z, Gooch KJ, Zhao Y, Lu X, He X. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. ACS Nano. 2017;11(7):6691–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin K, Klosterhoff BS, Han B. Characterization of cell-type-specific drug transport and resistance of breast cancers using tumor-microenvironment-on-chip. Mol Pharm. 2016;13(7):2214–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YS, Zhang YN, Zhang W. Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov Today 2017; 22(9): 1392–1399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185–198.
Article
CAS
PubMed
Google Scholar
Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 2011; 6(6): 385–391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Ouyang B, Lin Z, Wang L, Egeblad M, Chan WCW. The entry of nanoparticles into solid tumours. Nat Mater 2020; 19(5): 566–575.
Article
CAS
PubMed
Google Scholar
Holme MN, Fedotenko IA, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon PL, Ziegler A, Muller B, Saxer T, Zumbuehl A. Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat Nanotechnol 2012; 7(8): 536–543.
Article
CAS
PubMed
Google Scholar
Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437(7057): 426–431.
Article
CAS
PubMed
Google Scholar
Chen YY, Syed AM, MacMillan P, Rocheleau JV, Chan WCW. Flow rate affects nanoparticle uptake into endothelial cells. Adv Mater. 2020;32(24):e1906274.
Article
PubMed
CAS
Google Scholar
Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, Pujals S, Albertazzi L. Real-time ratiometric imaging of micelles assembly state in a microfluidic cancer-on-a-chip. ACS Appl Bio Mater. 2021;4(1):669–81.
Article
CAS
PubMed
Google Scholar
Li SD, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 2010; 145(3): 178–181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002; 2(10): 750–763.
Article
CAS
PubMed
Google Scholar
Jarvis M, Arnold M, Ott J, Krishnan V, Pant K, Prabhakarpandian B, Mitragotri S. Detachment of ligands from nanoparticle surface under flow and endothelial cell contact: assessment using microfluidic devices. Bioeng Transl Med. 2018;3(2):148–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ, Stewart JS. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294–296.
Article
CAS
Google Scholar
Kwak B, Ozcelikkale A, Shin CS, Park K, Han B. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release 2014; 194: 157–167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 2019; 6(1): 23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeda H, Fang J, Inutsuka T, Kitamoto Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 2003; 3(3): 319–328.
Article
CAS
PubMed
Google Scholar
Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010; 10(2): 138–146.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407(6801): 249–257.
Article
CAS
PubMed
Google Scholar
Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011; 17(11): 1359–1370.
Article
CAS
PubMed
Google Scholar
Ko J, Ahn J, Kim S, Lee Y, Lee J, Park D, Jeon NL. Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 2019; 19(17): 2822–2833.
Article
CAS
PubMed
Google Scholar
Chung M, Ahn J, Son K, Kim S, Jeon NL. Biomimetic model of tumor microenvironment on microfluidic platform. Adv Healthc Mater. 2017;6(15):1700196.
Article
CAS
Google Scholar
Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 2015; 15(1): 301–310.
Article
PubMed
PubMed Central
Google Scholar
Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110–111: 3–12.
Article
PubMed
CAS
Google Scholar
Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 2011; 153(3): 198–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chen W, Yang C, Fan Q, Wu W, Jiang X. Enhancing tumor penetration and targeting using size-minimized and zwitterionic nanomedicines. J Control Release 2016; 237: 115–124.
Article
CAS
PubMed
Google Scholar
Sun Q, Ojha T, Kiessling F, Lammers T, Shi Y. Enhancing tumor penetration of nanomedicines. Biomacromolecules. 2017;18(5):1449–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musyanovych A, Dausend J, Dass M, Walther P, Mailander V, Landfester K. Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 2011; 7(12): 4160–4168.
Article
CAS
PubMed
Google Scholar
Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ. Engineering tumors with 3D scaffolds. Nat Methods 2007; 4(10): 855–860.
Article
CAS
PubMed
Google Scholar
Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 2009; 5(10): 1213–1221.
CAS
PubMed
Google Scholar
Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 2009; 21(8): 1237–1244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751–760.
Article
CAS
PubMed
Google Scholar
Liu Q, Das M, Liu Y, Huang L. Targeted drug delivery to melanoma. Adv Drug Deliv Rev 2018; 127: 208–221.
Article
CAS
PubMed
Google Scholar
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
Article
CAS
PubMed
Google Scholar
Dai Q, Wilhelm S, Ding D, Syed AM, Sindhwani S, Zhang Y, Chen YY, MacMillan P, Chan WCW. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano. 2018;12(8):8423–35.
Article
CAS
PubMed
Google Scholar
Huang JQ, Zhao LP, Zhou X, Liu LS, Zheng RR, Deng FA, Liu YB, Yu XY, Li SY, Cheng H. Carrier free O2 -economizer for photodynamic therapy against hypoxic tumor by inhibiting cell respiration. Small 2022: e2107467.
Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed Engl. 2018;57(36):11522–31.
Article
CAS
PubMed
Google Scholar
Jeong K, Yu YJ, You JY, Rhee WJ, Kim JA. Exosome-mediated microRNA-497 delivery for anti-cancer therapy in a microfluidic 3D lung cancer model. Lab Chip 2020; 20(3): 548–557.
Article
CAS
PubMed
Google Scholar
Singh B, Maharjan S, Pan DC, Zhao Z, Gao Y, Zhang YS, Mitragotri S. Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials 2022; 280: 121302.
Article
CAS
PubMed
Google Scholar
Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, Dorato M, Van Deun K, Smith P, Berger B, Heller A. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 2000; 32(1): 56–67.
Article
CAS
PubMed
Google Scholar
Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, Petropolis DB, Kulkarni G, Rubins JE, Conegliano D, Nawroth J, Simic D, Lam W, Singer M, Barale E, Singh B, Sonee M, Streeter AJ, Manthey C, Jones B, Srivastava A, Andersson LC, Williams D, Park H, Barrile R, Sliz J, Herland A, Haney S, Karalis K, Ingber DE, Hamilton GA. Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med. 2019;11(517):5516.
Article
CAS
Google Scholar
Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O’Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483(7391): 570–575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhandari V, Li CH, Bristow RG, Boutros PC, Consortium P. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat Commun 2020; 11(1): 737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro MV, Gaspar VM, Mendes L, Duarte IF, Mano JF. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Small Methods. 2021;5(5):e2001207.
Article
PubMed
CAS
Google Scholar
Haase K, Offeddu GS, Gillrie MR, Kamm RD. Endothelial regulation of drug transport in a 3D vascularized tumor model. Adv Funct Mater. 2020;30(48):2002444.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. Next-generation cancer organoids. Nat Mater 2022; 21(2): 143–159.
Article
CAS
PubMed
Google Scholar
Lohmussaar K, Oka R, Espejo Valle-Inclan J, Smits MHH, Wardak H, Korving J, Begthel H, Proost N, van de Ven M, Kranenburg OW, Jonges TGN, Zweemer RP, Veersema S, van Boxtel R, Clevers H. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 2021; 28(8): 1380–1396 e1386.
Article
CAS
PubMed
Google Scholar
Toepke MW, Beebe DJ. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006; 6(12): 1484–1486.
Article
CAS
PubMed
Google Scholar
van Meer BJ, de Vries H, Firth KSA, van Weerd J, Tertoolen LGJ, Karperien HBJ, Jonkheijm P, Denning C, AP IJ, Mummery CL. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun 2017; 482(2): 323–328.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamanaka M, Wen X, Imamura S, Sakai R, Terada S, Kamei KI. Cyclo olefin polymer-based solvent-free mass-productive microphysiological systems. Biomed Mater. 2021;16(3): 035009.
Article
CAS
Google Scholar