Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017;44:456–62. https://doi.org/10.1111/jcpe.12732.
Article
Google Scholar
Genco RJ, Sanz M. Clinical and public health implications of periodontal and systemic diseases: an overview. Periodontol. 2000;2020(83):7–13. https://doi.org/10.1111/prd.12344.
Article
Google Scholar
Xu XY, Li X, Wang J, He XT, Sun HH, Chen FM. Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations. Stem Cells Transl Med. 2019;8:392–403. https://doi.org/10.1002/sctm.18-0181.
Article
Google Scholar
Ravidà A, Qazi M, Rodriguez MV, Galli M, Saleh MHA, Troiano G, Wang HL. The influence of the interaction between staging, grading and extent on tooth loss due to periodontitis. J Clin Periodontol. 2021;48:648–58. https://doi.org/10.1111/jcpe.13430.
Article
Google Scholar
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44. https://doi.org/10.1038/nri3785.
Article
Google Scholar
Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials. 2011;32:3189–209. https://doi.org/10.1016/j.biomaterials.2010.12.032.
Article
Google Scholar
Luan X, Zhou X, Trombetta-eSilva J, Francis M, Gaharwar AK, Atsawasuwan P, Diekwisch TGH. MicroRNAs and periodontal homeostasis. J Dent Res. 2017;96:491–500. https://doi.org/10.1177/0022034516685711.
Article
Google Scholar
Hans M, Hans VM. Toll-like receptors and their dual role in periodontitis: a review. J Oral Sci. 2011;53:263–71. https://doi.org/10.2334/josnusd.53.263.
Article
Google Scholar
Wang IC, Sugai JV, Majzoub J, Johnston J, Giannobile WV, Wang HL. Pro-inflammatory profiles in cardiovascular disease patients with peri-implantitis. J Periodontol. 2022;93:824–36. https://doi.org/10.1002/JPER.21-0419.
Article
Google Scholar
Tsukasaki M, Komatsu N, Nagashima K, Nitta T, Pluemsakunthai W, Shukunami C, Iwakura Y, Nakashima T, Okamoto K, Takayanagi H. Host defense against oral microbiota by bone-damaging T cells. Nat Commun. 2018;9:701. https://doi.org/10.1038/s41467-018-03147-6.
Article
Google Scholar
Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun. 2012;80:1948–57. https://doi.org/10.1128/IAI.06014-11.
Article
Google Scholar
Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20:5695. https://doi.org/10.3390/ijms20225695.
Article
Google Scholar
Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF, Lacroix R, Lee Y, van Leeuwen TG, Mackman N, Mäger I, Nolan JP, van der Pol E, Pegtel DM, Sahoo S, Siljander PRM, Sturk G, de Wever O, Nieuwland R. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120:1632–48. https://doi.org/10.1161/CIRCRESAHA.117.309417.
Article
Google Scholar
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.
Article
Google Scholar
Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 2021;22:560–70. https://doi.org/10.1038/s41590-021-00899-0.
Article
Google Scholar
Kornman KS. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008;79(Suppl 8):1560–8. https://doi.org/10.1902/jop.2008.080213.
Article
Google Scholar
Yucel-Lindberg T, Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med. 2013;15:e7. https://doi.org/10.1017/erm.2013.8.
Article
Google Scholar
Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2000;2015(69):7–17. https://doi.org/10.1111/prd.12104.
Article
Google Scholar
Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.
Article
Google Scholar
Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med. 2019;11:eaav8521. https://doi.org/10.1126/scitranslmed.aav8521.
Article
Google Scholar
Riazifar M, Pone EJ, Lötvall J, Zhao W. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125–54. https://doi.org/10.1146/annurev-pharmtox-061616-030146.
Article
Google Scholar
Hua S, Bartold PM, Gulati K, Moran CS, Ivanovski S, Han P. Periodontal and dental pulp cell-derived small extracellular vesicles: a review of the current status. Nanomaterials (Basel). 2021;11:1858. https://doi.org/10.3390/nano11071858.
Article
Google Scholar
Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, Wang Y, Yan B, Xie W, Liu F, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7:2920–33. https://doi.org/10.1039/c9bm00101h.
Article
Google Scholar
Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing therapeutic exosomes: from bench to industry. Mol Cells. 2022;45:284–90. https://doi.org/10.14348/molcells.2022.2033.
Article
Google Scholar
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. https://doi.org/10.1126/science.aau6977.
Article
Google Scholar
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles. 2017;6:1400370. https://doi.org/10.1080/20013078.2017.1400370.
Article
Google Scholar
Tiku V, Tan MW. Host immunity and cellular responses to bacterial outer membrane vesicles. Trends Immunol. 2021;42:1024–36. https://doi.org/10.1016/j.it.2021.09.006.
Article
Google Scholar
Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 2022;40:1173–94. https://doi.org/10.1016/j.tibtech.2022.03.005.
Article
Google Scholar
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24. https://doi.org/10.1038/s41579-018-0112-2.
Article
Google Scholar
Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao CC, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun. 2017;8:481. https://doi.org/10.1038/s41467-017-00492-w.
Article
Google Scholar
Hafiane A, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism. 2018;85:213–22. https://doi.org/10.1016/j.metabol.2018.04.008.
Article
Google Scholar
Takeuchi T. Pathogenic and protective roles of extracellular vesicles in neurodegenerative diseases. J Biochem. 2021;169:181–6. https://doi.org/10.1093/jb/mvaa131.
Article
Google Scholar
Novello S, Pellen-Mussi P, Jeanne S. Mesenchymal stem cell-derived small extracellular vesicles as cell-free therapy: perspectives in periodontal regeneration. J Periodontal Res. 2021;56:433–42. https://doi.org/10.1111/jre.12866.
Article
Google Scholar
Bartold PM, Van Dyke TE. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning learned concepts. Periodontol. 2000;2013(62):203–17. https://doi.org/10.1111/j.1600-0757.2012.00450.x.
Article
Google Scholar
Wang L, Wang J, Jin Y, Gao H, Lin X. Oral administration of all-trans retinoic acid suppresses experimental periodontitis by modulating the Th17/Treg imbalance. J Periodontol. 2014;85:740–50. https://doi.org/10.1902/jop.2013.130132.
Article
Google Scholar
Wang L, Guan N, Jin Y, Lin X, Gao H. Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine model. Int Immunopharmacol. 2015;25:65–73. https://doi.org/10.1016/j.intimp.2015.01.007.
Article
Google Scholar
Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, Liang Y, Bao L, Feng G, Ji J, Feng X, Gu Z. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis. J Cell Physiol. 2019;234:20662–74. https://doi.org/10.1002/jcp.28671.
Article
Google Scholar
Zhao M, Dai W, Wang H, Xue C, Feng J, He Y, Wang P, Li S, Bai D, Shu R. Periodontal ligament fibroblasts regulate osteoblasts by exosome secretion induced by inflammatory stimuli. Arch Oral Biol. 2019;105:27–34. https://doi.org/10.1016/j.archoralbio.2019.06.002.
Article
Google Scholar
Zhang Z, Shuai Y, Zhou F, Yin J, Hu J, Guo S, Wang Y, Liu W. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis. Int J Med Sci. 2020;17:558–67. https://doi.org/10.7150/ijms.40918.
Article
Google Scholar
Bi J, Koivisto L, Owen G, Huang P, Wang Z, Shen Y, Bi L, Rokka A, Haapasalo M, Heino J, Häkkinen L, Larjava HS. Epithelial microvesicles promote an inflammatory phenotype in fibroblasts. J Dent Res. 2016;95:680–8. https://doi.org/10.1177/0022034516633172.
Article
Google Scholar
Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F. Release of toxic microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun. 1982;37:151–4. https://doi.org/10.1128/iai.37.1.151-154.1982.
Article
Google Scholar
Grenier D, Mayrand D. Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun. 1987;55:111–7. https://doi.org/10.1128/iai.55.1.111-117.1987.
Article
Google Scholar
Ma L, Cao Z. Membrane vesicles from periodontal pathogens and their potential roles in periodontal disease and systemic illnesses. J Periodontal Res. 2021;56:646–55. https://doi.org/10.1111/jre.12884.
Article
Google Scholar
Pathirana RD, Kaparakis-Liaskos M. Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis. Cell Microbiol. 2016;18:1518–24. https://doi.org/10.1111/cmi.12658.
Article
Google Scholar
Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002;32:1–13. https://doi.org/10.1006/mpat.2001.0474.
Article
Google Scholar
Veith PD, Chen YY, Gorasia DG, Chen D, Glew MD, O’Brien-Simpson NM, Cecil JD, Holden JA, Reynolds EC. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. J Proteome Res. 2014;13:2420–32. https://doi.org/10.1021/pr401227e.
Article
Google Scholar
Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS ONE. 2011;6:e17027. https://doi.org/10.1371/journal.pone.0017027.
Article
Google Scholar
Unal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol. 2011;33:395–408. https://doi.org/10.1007/s00281-010-0231-y.
Article
Google Scholar
Ho MH, Chen CH, Goodwin JS, Wang BY, Xie H. Functional advantages of Porphyromonas gingivalis vesicles. PLoS ONE. 2015;10: e0123448. https://doi.org/10.1371/journal.pone.0123448.
Article
Google Scholar
Fleetwood AJ, Lee MKS, Singleton W, Achuthan A, Lee MC, O’Brien-Simpson NM, Cook AD, Murphy AJ, Dashper SG, Reynolds EC, Hamilton JA. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Front Cell Infect Microbiol. 2017;7:351. https://doi.org/10.3389/fcimb.2017.00351.
Article
Google Scholar
Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Singleton W, Perez-Gonzalez A, Mansell A, Reynolds EC. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Front Immunol. 2017;8:1017. https://doi.org/10.3389/fimmu.2017.01017.
Article
Google Scholar
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol. 2015;30:451–73. https://doi.org/10.1111/omi.12104.
Article
Google Scholar
Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25. https://doi.org/10.1038/nrmicro2873.
Article
Google Scholar
Gui MJ, Dashper SG, Slakeski N, Chen YY, Reynolds EC. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Mol Oral Microbiol. 2016;31:365–78. https://doi.org/10.1111/omi.12134.
Article
Google Scholar
Kamaguchi A, Nakayama K, Ichiyama S, Nakamura R, Watanabe T, Ohta M, Baba H, Ohyama T. Effect of Porphyromonas gingivalis vesicles on coaggregation of Staphylococcus aureus to oral microorganisms. Curr Microbiol. 2003;47:485–91. https://doi.org/10.1007/s00284-003-4069-6.
Article
Google Scholar
Inagaki S, Onishi S, Kuramitsu HK, Sharma A. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia.” Infect Immun. 2006;74:5023–8. https://doi.org/10.1128/IAI.00062-06.
Article
Google Scholar
Grenier D. Porphyromonas gingivalis outer membrane vesicles mediate coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Int J Dent. 2013;2013: 305476. https://doi.org/10.1155/2013/305476.
Article
Google Scholar
Lindholm M, Min Aung K, Nyunt Wai S, Oscarsson J. Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance. J Oral Microbiol. 2018;11:1536192. https://doi.org/10.1080/20002297.2018.1536192.
Article
Google Scholar
Lindholm M, Metsäniitty M, Granström E, Oscarsson J. Outer membrane vesicle-mediated serum protection in Aggregatibacter actinomycetemcomitans. J Oral Microbiol. 2020;12:1747857. https://doi.org/10.1080/20002297.2020.1747857.
Article
Google Scholar
Duncan L, Yoshioka M, Chandad F, Grenier D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog. 2004;36:319–25. https://doi.org/10.1016/j.micpath.2004.02.004.
Article
Google Scholar
Waller T, Kesper L, Hirschfeld J, Dommisch H, Kölpin J, Oldenburg J, Uebele J, Hoerauf A, Deschner J, Jepsen S, et al. Porphyromonas gingivalis outer membrane vesicles induce selective tumor necrosis factor tolerance in a toll-like receptor 4- and mTOR-dependent manner. Infect Immun. 2016;84:1194–204. https://doi.org/10.1128/IAI.01390-15.
Article
Google Scholar
Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs via outer membrane vesicles in periodontal pathogens. J Dent Res. 2017;96:458–66. https://doi.org/10.1177/0022034516685071.
Article
Google Scholar
Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003;74:391–401. https://doi.org/10.1902/jop.2003.74.3.391.
Article
Google Scholar
Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90. https://doi.org/10.1038/nrmicro2337.
Article
Google Scholar
Ebersole JL, Graves CL, Gonzalez OA, Dawson D 3rd, Morford LA, Huja PE, Hartsfield JK Jr, Huja SS, Pandruvada S, Wallet SM. Aging, inflammation, immunity and periodontal disease. Periodontol. 2000;2016(72):54–75. https://doi.org/10.1111/prd.12135.
Article
Google Scholar
Ismail S, Hampton MB, Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun. 2003;71:5670–5. https://doi.org/10.1128/IAI.71.10.5670-5675.2003.
Article
Google Scholar
Marion CR, Lee J, Sharma L, Park KS, Lee C, Liu W, Liu P, Feng J, Gho YS, Dela Cruz CS. Toll-like receptors 2 and 4 modulate pulmonary inflammation and host factors mediated by outer membrane vesicles derived from Acinetobacter baumannii. Infect Immun. 2019;87:e00243-e319. https://doi.org/10.1128/IAI.00243-19.
Article
Google Scholar
Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM. Filifactor alocis—a new emerging periodontal pathogen. Microbes Infect. 2015;17:517–30. https://doi.org/10.1016/j.micinf.2015.03.011.
Article
Google Scholar
Kim HY, Lim Y, An SJ, Choi BK. Characterization and immunostimulatory activity of extracellular vesicles from Filifactor alocis. Mol Oral Microbiol. 2020;35:1–9. https://doi.org/10.1111/omi.12272.
Article
Google Scholar
Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7:1250–7. https://doi.org/10.1038/ni1412.
Article
Google Scholar
Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol. 2010;12:372–85. https://doi.org/10.1111/j.1462-5822.2009.01404.x.
Article
Google Scholar
Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15:375–87. https://doi.org/10.1038/nri3837.
Article
Google Scholar
Almubarak A, Tanagala KKK, Papapanou PN, Lalla E, Momen-Heravi F. Disruption of monocyte and macrophage homeostasis in periodontitis. Front Immunol. 2020;11:330. https://doi.org/10.3389/fimmu.2020.00330.
Article
Google Scholar
Hajishengallis G. New developments in neutrophil biology and periodontitis. Periodontol. 2000;2020(82):78–92. https://doi.org/10.1111/prd.12313.
Article
Google Scholar
Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005;19:2645–55. https://doi.org/10.1101/gad.1299905.
Article
Google Scholar
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. microLife. 2021;2:uqab006. https://doi.org/10.1093/femsml/uqab006.
Article
Google Scholar
Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Chen YY, Singleton W, Gause KT, Yan Y, Caruso F, Reynolds EC. Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens. PLoS ONE. 2016;11: e0151967. https://doi.org/10.1371/journal.pone.0151967.
Article
Google Scholar
Thay B, Damm A, Kufer TA, Wai SN, Oscarsson J. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infect Immun. 2014;82:4034–46. https://doi.org/10.1128/IAI.01980-14.
Article
Google Scholar
Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, Senpuku H. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect. 2014;16:6–16. https://doi.org/10.1016/j.micinf.2013.10.005.
Article
Google Scholar
Bartruff JB, Yukna RA, Layman DL. Outer membrane vesicles from Porphyromonas gingivalis affect the growth and function of cultured human gingival fibroblasts and umbilical vein endothelial cells. J Periodontol. 2005;76:972–9. https://doi.org/10.1902/jop.2005.76.6.972.
Article
Google Scholar
Furuta N, Takeuchi H, Amano A. Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun. 2009;77:4761–70. https://doi.org/10.1128/IAI.00841-09.
Article
Google Scholar
Baba A, Abe N, Kadowaki T, Nakanishi H, Ohishi M, Asao T, Yamamoto K. Arg-gingipain is responsible for the degradation of cell adhesion molecules of human gingival fibroblasts and their death induced by Porphyromonas gingivalis. Biol Chem. 2001;382:817–24. https://doi.org/10.1515/BC.2001.099.
Article
Google Scholar
Rompikuntal PK, Thay B, Khan MK, Alanko J, Penttinen AM, Asikainen S, Wai SN, Oscarsson J. Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun. 2012;80:31–42. https://doi.org/10.1128/IAI.06069-11.
Article
Google Scholar
Song MK, Kim HY, Choi BK, Kim HH. Filifactor alocis-derived extracellular vesicles inhibit osteogenesis through TLR2 signaling. Mol Oral Microbiol. 2020;35:202–10. https://doi.org/10.1111/omi.12307.
Article
Google Scholar
Kim HY, Song MK, Gho YS, Kim HH, Choi BK. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2. J Extracell Vesicles. 2021;10: e12157. https://doi.org/10.1002/jev2.12157.
Article
Google Scholar
Chen G, Sun Q, Cai Q, Zhou H. Outer membrane vesicles from Fusobacterium nucleatum switch M0-like macrophages toward the M1 phenotype to destroy periodontal tissues in mice. Front Microbiol. 2022;13: 815638. https://doi.org/10.3389/fmicb.2022.815638.
Article
Google Scholar
Cullinan MP, Seymour GJ. Periodontal disease and systemic illness: will the evidence ever be enough? Periodontol. 2000;2013(62):271–86. https://doi.org/10.1111/prd.12007.
Article
Google Scholar
Gaudilliere DK, Culos A, Djebali K, Tsai AS, Ganio EA, Choi WM, Han X, Maghaireh A, Choisy B, Baca Q, et al. Systemic immunologic consequences of chronic periodontitis. J Dent Res. 2019;98:985–93. https://doi.org/10.1177/0022034519857714.
Article
Google Scholar
Zhang Z, Liu D, Liu S, Zhang S, Pan Y. The Role of Porphyromonas gingivalis outer membrane vesicles in periodontal disease and related systemic diseases. Front Cell Infect Microbiol. 2021;10: 585917. https://doi.org/10.3389/fcimb.2020.585917.
Article
Google Scholar
Jia Y, Guo B, Yang W, Zhao Q, Jia W, Wu Y. Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase through ERK1/2 and p38 MAPK. Arch Oral Biol. 2015;60:488–95. https://doi.org/10.1016/j.archoralbio.2014.12.009.
Article
Google Scholar
Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in cardiovascular disease. Front Physiol. 2015;6:365. https://doi.org/10.3389/fphys.2015.0036.
Article
Google Scholar
Farrugia C, Stafford GP, Murdoch C. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J Dent Res. 2020;99:1494–501. https://doi.org/10.1177/0022034520943187.
Article
Google Scholar
Yang WW, Guo B, Jia WY, Jia Y. Porphyromonas gingivalis-derived outer membrane vesicles promote calcification of vascular smooth muscle cells through ERK1/2-RUNX2. FEBS Open Bio. 2016;6:1310–9. https://doi.org/10.1002/2211-5463.12151.
Article
Google Scholar
Singhrao SK, Olsen I. Are Porphyromonas gingivalis outer membrane vesicles microbullets for sporadic Alzheimer’s disease manifestation? J Alzheimers Dis Rep. 2018;2:219–28. https://doi.org/10.3233/ADR-180080.
Article
Google Scholar
Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J. 2019;33:13412–22. https://doi.org/10.1096/fj.201901575R.
Article
Google Scholar
Pritchard AB, Fabian Z, Lawrence CL, Morton G, Crean S, Alder JE. An investigation into the effects of outer membrane vesicles and lipopolysaccharide of Porphyromonas gingivalis on blood–brain barrier integrity, permeability, and disruption of scaffolding proteins in a human in vitro model. J Alzheimers Dis. 2022;86:343–64. https://doi.org/10.3233/JAD-215054.
Article
Google Scholar
Ha JY, Choi SY, Lee JH, Hong SH, Lee HJ. Delivery of periodontopathogenic extracellular vesicles to brain monocytes and microglial IL-6 promotion by RNA cargo. Front Mol Biosci. 2020;7: 596366. https://doi.org/10.3389/fmolb.2020.596366.
Article
Google Scholar
Seyama M, Yoshida K, Yoshida K, Fujiwara N, Ono K, Eguchi T, Kawai H, Guo J, Weng Y, Haoze Y, et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165731. https://doi.org/10.1016/j.bbadis.2020.165731.
Article
Google Scholar
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55. https://doi.org/10.1016/S0140-6736(04)16627-0.
Article
Google Scholar
Tassi SA, Sergio NZ, Misawa MYO, Villar CC. Efficacy of stem cells on periodontal regeneration: systematic review of pre-clinical studies. J Periodontal Res. 2017;52:793–812. https://doi.org/10.1111/jre.12455.
Article
Google Scholar
Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41:653–64. https://doi.org/10.1016/j.tips.2020.06.009.
Article
Google Scholar
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36–45. https://doi.org/10.7150/ijms.21666.
Article
Google Scholar
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27:523–31. https://doi.org/10.1016/j.stem.2020.09.014.
Article
Google Scholar
Zarubova J, Hasani-Sadrabadi MM, Dashtimoghadam E, Zhang X, Ansari S, Li S, Moshaverinia A. Engineered delivery of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration. Adv Healthc Mater. 2022;11: e2102593. https://doi.org/10.1002/adhm.202102593.
Article
Google Scholar
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23:812–23. https://doi.org/10.1038/mt.2015.44.
Article
Google Scholar
Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of adipose-derived extracellular vesicles in metabolic homeostasis and diseases: communication from the distance between cells/tissues. Theranostics. 2020;10:7422–35. https://doi.org/10.7150/thno.42167.
Article
Google Scholar
Veerman RE, GüçlülerAkpinar G, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles—functions and therapeutic applications. Trends Mol Med. 2019;25:382–94. https://doi.org/10.1016/j.molmed.2019.02.003.
Article
Google Scholar
Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D. Mesenchymal stem cell-derived extracellular vesicles: opportunities and challenges for clinical translation. Front Bioeng Biotechnol. 2020;8:997. https://doi.org/10.3389/fbioe.2020.00997.
Article
Google Scholar
Mohammed E, Khalil E, Sabry D. Effect of adipose-derived stem cells and their exo as adjunctive therapy to nonsurgical periodontal treatment: a histologic and histomorphometric study in rats. Biomolecules. 2018;8:167. https://doi.org/10.3390/biom8040167.
Article
Google Scholar
Wei J, Song Y, Du Z, Yu F, Zhang Y, Jiang N, Ge X. Exosomes derived from human exfoliated deciduous teeth ameliorate adult bone loss in mice through promoting osteogenesis. J Mol Histol. 2020;51:455–66. https://doi.org/10.1007/s10735-020-09896-3.
Article
Google Scholar
Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 2018;8:906–20. https://doi.org/10.7150/thno.20746.
Article
Google Scholar
Nuñez J, Vignoletti F, Caffesse RG, Sanz M. Cellular therapy in periodontal regeneration. Periodontol. 2000;2019(79):107–16. https://doi.org/10.1111/prd.12250.
Article
Google Scholar
Han XD, Chen HM, Li C. Effect of human periodontal ligament stem cell-derived extracellular vesicles on macrophage pyroptosis and periodontal inflammatory injury in periodontitis. Cells Tissues Organs. 2022;211:57–72. https://doi.org/10.1159/000519569.
Article
Google Scholar
Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, Lin Z. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism. Bioact Mater. 2020;5:1113–26. https://doi.org/10.1016/j.bioactmat.2020.07.002.
Article
Google Scholar
Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, Wei X, Ling J. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and promoting odontogenesis. Stem Cell Res Ther. 2020;11:517. https://doi.org/10.1186/s13287-020-02039-1.
Article
Google Scholar
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24. https://doi.org/10.1016/j.actbio.2020.12.046.
Article
Google Scholar
Wang Z, Maruyama K, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E. Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1β production through the inhibition of the NF-κB signaling pathway in macrophages. Front Immunol. 2019;10:1310. https://doi.org/10.3389/fimmu.2019.01310.
Article
Google Scholar
Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019;89:252–64. https://doi.org/10.1016/j.actbio.2019.03.021.
Article
Google Scholar
Liu Y, Zhuang X, Yu S, Yang N, Zeng J, Liu X, Chen X. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther. 2021;12:76. https://doi.org/10.1186/s13287-021-02151-w.
Article
Google Scholar
Wu J, Chen L, Wang R, Song Z, Shen Z, Zhao Y, Huang S, Lin Z. Exosomes secreted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis. ACS Biomater Sci Eng. 2019;5:3561–71. https://doi.org/10.1021/acsbiomaterials.9b00607.
Article
Google Scholar
Wang M, Li J, Ye Y, He S, Song J. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro. Differentiation. 2020;111:1–11. https://doi.org/10.1016/j.diff.2019.10.003.
Article
Google Scholar
Wu M, Liu X, Li Z, Huang X, Guo H, Guo X, Yang X, Li B, Xuan K, Jin Y. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-β/SMAD2/3 signalling. Cell Prolif. 2021;54: e13074. https://doi.org/10.1111/cpr.13074.
Article
Google Scholar
Lei F, Li M, Lin T, Zhou H, Wang F, Su X. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 2022;141:333–43. https://doi.org/10.1016/j.actbio.2021.12.035.
Article
Google Scholar
Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, Naoe T, Akao Y. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 2014;1839:1256–72. https://doi.org/10.1016/j.bbagrm.2014.09.002.
Article
Google Scholar
Xu XY, Tian BM, Xia Y, Xia YL, Li X, Zhou H, Tan YZ, Chen FM. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med. 2020;9:1414–30. https://doi.org/10.1002/sctm.19-0418.
Article
Google Scholar
Lv PY, Gao PF, Tian GJ, Yang YY, Mo FF, Wang ZH, Sun L, Kuang MJ, Wang YL. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway. Stem Cell Res Ther. 2020;11:295. https://doi.org/10.1186/s13287-020-01815-3.
Article
Google Scholar
Shi W, Guo S, Liu L, Liu Q, Huo F, Ding Y, Tian W. Small extracellular vesicles from lipopolysaccharide-preconditioned dental follicle cells promote periodontal regeneration in an inflammatory microenvironment. ACS Biomater Sci Eng. 2020;6:5797–810. https://doi.org/10.1021/acsbiomaterials.0c00882.
Article
Google Scholar
Zhou H, Li X, Wu RX, He XT, An Y, Xu XY, Sun HH, Wu LA, Chen FM. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote local angiogenesis by targeting Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54: e13026. https://doi.org/10.1111/cpr.13026.
Article
Google Scholar
Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif. 2022;55: e13162. https://doi.org/10.1111/cpr.13162.
Article
Google Scholar
Bitto NJ, Kaparakis-Liaskos M. The therapeutic benefit of bacterial membrane vesicles. Int J Mol Sci. 2017;18:1287. https://doi.org/10.3390/ijms18061287.
Article
Google Scholar
Baart GJ, de Jong G, Philippi M, van’t Riet K, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Scale-up for bulk production of vaccine against meningococcal disease. Vaccine. 2007;25:6399–408. https://doi.org/10.1016/j.vaccine.2007.06.008.
Article
Google Scholar
Turner L, Praszkier J, Hutton ML, Steer D, Ramm G, Kaparakis-Liaskos M, Ferrero RL. Increased outer membrane vesicle formation in a Helicobacter pylori tolB mutant. Helicobacter. 2015;20:269–83. https://doi.org/10.1111/hel.12196.
Article
Google Scholar
Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527:323–8. https://doi.org/10.1038/nature16057.
Article
Google Scholar
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174:2225–36. https://doi.org/10.1111/bph.13664.
Article
Google Scholar
Ardila CM, Granada MI, Guzmán IC. Antibiotic resistance of subgingival species in chronic periodontitis patients. J Periodontal Res. 2010;45:557–63. https://doi.org/10.1111/j.1600-0765.2010.01274.x.
Article
Google Scholar
Eick S, Pfister W. Efficacy of antibiotics against periodontopathogenic bacteria within epithelial cells: an in vitro study. J Periodontol. 2004;75:1327–34. https://doi.org/10.1902/jop.2004.75.10.1327.
Article
Google Scholar
Wu S, Huang Y, Yan J, Li Y, Wang J, Yang YY, Yuan P, Ding X. Bacterial outer membrane-coated mesoporous silica nanoparticles for targeted delivery of antibiotic rifampicin against gram-negative bacterial infection in vivo. Adv Funct Mater. 2021;31:2103442. https://doi.org/10.1002/adfm.202103442.
Article
Google Scholar
Li Z, Clarke AJ, Beveridge TJ. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol. 1998;180:5478–83. https://doi.org/10.1128/JB.180.20.5478-5483.1998.
Article
Google Scholar
MacDonald KL, Beveridge TJ. Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on gram-positive bacteria. Can J Microbiol. 2002;48:810–20. https://doi.org/10.1139/w02-077.
Article
Google Scholar
Ofek I, Hasty DL, Sharon N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol. 2003;38:181–91. https://doi.org/10.1016/S0928-8244(03)00228-1.
Article
Google Scholar
Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, Wei X, Zhou Z, Obonyo M, Fang RH, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed Engl. 2019;58:11404–8. https://doi.org/10.1002/anie.201906280.
Article
Google Scholar
Nakao R, Hasegawa H, Dongying B, Ohnishi M, Senpuku H. Assessment of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as possible mucosal immunogen. Vaccine. 2016;34:4626–34. https://doi.org/10.1016/j.vaccine.2016.06.016.
Article
Google Scholar
Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, Watanabe H, Senpuku H. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS ONE. 2011;6: e26163. https://doi.org/10.1371/journal.pone.0026163.
Article
Google Scholar
Bai D, Nakao R, Ito A, Uematsu H, Senpuku H. Immunoreactive antigens recognized in serum samples from mice intranasally immunized with Porphyromonas gingivalis outer membrane vesicles. Pathog Dis. 2015;73:ftu006. https://doi.org/10.1093/femspd/ftu006.
Article
Google Scholar
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018;7:273. https://doi.org/10.3390/cells7120273.
Article
Google Scholar
He F, Li L, Fan R, Wang X, Chen X, Xu Y. Extracellular vesicles: an emerging regenerative treatment for oral disease. Front Cell Dev Biol. 2021;9: 669011. https://doi.org/10.3389/fcell.2021.669011.
Article
Google Scholar
Maria Y, Konoshenko EA, Lekchnov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int. 2018;2018:1–27. https://doi.org/10.1155/2018/8545347.
Article
Google Scholar
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc. 2021;16:3163–85. https://doi.org/10.1038/s41596-021-00551-z.
Article
Google Scholar
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.
Article
Google Scholar
Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J Extracell Vesicles. 2021;10: e12164. https://doi.org/10.1002/jev2.12164.
Article
Google Scholar
Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma—contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles. 2022;11: e12213. https://doi.org/10.1002/jev2.12213.
Article
Google Scholar
Xing Y, Yerneni SS, Wang W, Taylor RE, Campbell PG, Ren X. Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. Biomaterials. 2022;281: 121357. https://doi.org/10.1016/j.biomaterials.2021.121357.
Article
Google Scholar
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, et al. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Theranostics. 2020;10:1454–78. https://doi.org/10.7150/thno.39566.
Article
Google Scholar
Swanson WB, Zhang Z, Xiu K, Gong T, Eberle M, Wang Z, Ma PX. Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater. 2020;118:215–32. https://doi.org/10.1016/j.actbio.2020.09.052.
Article
Google Scholar
Liu A, Lin D, Zhao H, Chen L, Cai B, Lin K, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair through Bmpr2/Acvr2b competitive receptor-activated Smad pathway. Biomaterials. 2021;272: 120718. https://doi.org/10.1016/j.biomaterials.2021.120718.
Article
Google Scholar
Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93:1212–21. https://doi.org/10.1177/0022034514544301.
Article
Google Scholar
Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal tissue engineering with a multiphasic construct and cell sheets. J Dent Res. 2019;98:673–81. https://doi.org/10.1177/0022034519837967.
Article
Google Scholar
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods. 2021;18:1013–26. https://doi.org/10.1038/s41592-021-01206-3.
Article
Google Scholar