Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-treating fields: a fourth modality in cancer treatment. Clin Cancer Res. 2018;24:266–75. https://doi.org/10.1158/1078-0432.Ccr-17-1117.
Article
CAS
Google Scholar
Pulendran B, Davis MM. The science and medicine of human immunology. Science. 2020. https://doi.org/10.1126/science.aay4014.
Article
Google Scholar
Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer. 2020;6:605–18. https://doi.org/10.1016/j.trecan.2020.02.022.
Article
CAS
Google Scholar
McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.
Google Scholar
Rosenberg SA. Cancer immunotherapy comes of age. Nat Clin Pract Oncol. 2005;2:115. https://doi.org/10.1038/ncponc0101.
Article
Google Scholar
Jin SM, Lee HS, Haque MR, Kim HN, Kim HJ, Oh BJ, et al. Multi-layer surface modification of pancreatic islets for magnetic resonance imaging using ferumoxytol. Biomaterials. 2019;214:15. https://doi.org/10.1016/j.biomaterials.2019.119224.
Article
CAS
Google Scholar
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125:3335–7. https://doi.org/10.1172/jci83871.
Article
Google Scholar
Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35. https://doi.org/10.1016/j.immuni.2019.12.011.
Article
CAS
Google Scholar
Morad G, Helmink BA, Sharma P, Wargo JA. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2021;184:5309–37. https://doi.org/10.1016/j.cell.2021.09.020.
Article
CAS
Google Scholar
Souri M, Soltani M, Kashkooli FM, Shahvandi MK. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release. 2022;341:227–46. https://doi.org/10.1016/j.jconrel.2021.11.024.
Article
CAS
Google Scholar
Liu GX, Yang LN, Chen G, Xu FH, Yang FH, Yu HX, et al. A review on drug delivery system for tumor therapy. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.735446.
Article
Google Scholar
Narang AS, Varia S. Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev. 2011;63:640–58. https://doi.org/10.1016/j.addr.2011.04.002.
Article
CAS
Google Scholar
Zuo S, Song J, Zhang J, He Z, Sun B, Sun J. Nano-immunotherapy for each stage of cancer cellular immunity: which, why, and what? Theranostics. 2021;11:7471–87. https://doi.org/10.7150/thno.59953.
Article
CAS
Google Scholar
Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl. 2019;58:670–80. https://doi.org/10.1002/anie.201804882.
Article
CAS
Google Scholar
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. https://doi.org/10.1038/natrevmats.2016.14.
Article
CAS
Google Scholar
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. https://doi.org/10.1021/nn900002m.
Article
CAS
Google Scholar
Deo SK, Dhar S, Daunert S. Drug delivery: challenges and nanotechnology-based solutions. Mol Aspects Med. 2022;83:101051. https://doi.org/10.1016/j.mam.2021.101051.
Article
CAS
Google Scholar
Forrest ML, Kwon GS. Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev. 2008;60:861–2. https://doi.org/10.1016/j.addr.2008.02.013.
Article
CAS
Google Scholar
Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics. 2020;10:4557–88. https://doi.org/10.7150/thno.38069.
Article
CAS
Google Scholar
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knuchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25. https://doi.org/10.1016/j.addr.2019.01.005.
Article
CAS
Google Scholar
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev. 2020;158:36–62. https://doi.org/10.1016/j.addr.2020.06.010.
Article
CAS
Google Scholar
Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–4. https://doi.org/10.7150/thno.49577.
Article
Google Scholar
Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem Int Ed Engl. 2008;47:6259–62. https://doi.org/10.1002/anie.200801369.
Article
CAS
Google Scholar
Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52:2190–200. https://doi.org/10.1021/acs.accounts.9b00140.
Article
CAS
Google Scholar
Wen M, Ouyang J, Wei C, Li H, Chen W, Liu YN. Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew Chem Int Ed Engl. 2019;58:17425–32. https://doi.org/10.1002/anie.201909729.
Article
CAS
Google Scholar
Shen Y, Wu C, Uyeda TQP, Plaza GR, Liu B, Han Y, et al. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics. 2017;7:1735–48. https://doi.org/10.7150/thno.18352.
Article
CAS
Google Scholar
Liu X, Yan B, Li Y, Ma X, Jiao W, Shi K, et al. Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy. ACS Nano. 2020;14:1936–50. https://doi.org/10.1021/acsnano.9b08320.
Article
CAS
Google Scholar
Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano. 2019;13:8811–25. https://doi.org/10.1021/acsnano.9b01979.
Article
CAS
Google Scholar
Kang H, Wong SHD, Pan Q, Li G, Bian L. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 2019;19:1963–75. https://doi.org/10.1021/acs.nanolett.8b05150.
Article
CAS
Google Scholar
Yu B, Choi B, Li W, Kim DH. Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nat Commun. 2020;11:3637. https://doi.org/10.1038/s41467-020-17380-5.
Article
CAS
Google Scholar
Cheng Y, Lemke-Miltner CD, Wongpattaraworakul W, Wang Z, Chan CHF, Salem AK, et al. In situ immunization of a TLR9 agonist virus-like particle enhances anti-PD1 therapy. J Immunother Cancer. 2020. https://doi.org/10.1136/jitc-2020-000940.
Article
Google Scholar
Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, et al. Systemically administered TLR7/8 agonist and antigen-conjugated nanogels govern immune responses against tumors. ACS Nano. 2022;16:4426–43. https://doi.org/10.1021/acsnano.1c10709.
Article
CAS
Google Scholar
Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv. 2020;6:eaaw6071. https://doi.org/10.1126/sciadv.aaw6071.
Article
CAS
Google Scholar
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44. https://doi.org/10.1038/s41571-021-00470-8.
Article
Google Scholar
Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol. 2020;64:1–12. https://doi.org/10.1016/j.semcancer.2019.06.001.
Article
CAS
Google Scholar
Park JA, Cheung NV. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol. 2020;38:1836–48. https://doi.org/10.1200/jco.19.01410.
Article
CAS
Google Scholar
Chen W, Yuan Y, Jiang X. Antibody and antibody fragments for cancer immunotherapy. J Control Release. 2020;328:395–406. https://doi.org/10.1016/j.jconrel.2020.08.021.
Article
CAS
Google Scholar
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021;14:45. https://doi.org/10.1186/s13045-021-01056-8.
Article
CAS
Google Scholar
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62. https://doi.org/10.1038/s41571-021-00473-5.
Article
CAS
Google Scholar
Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next decade of immune checkpoint therapy. Cancer Discov. 2021;11:838–57. https://doi.org/10.1158/2159-8290.Cd-20-1680.
Article
CAS
Google Scholar
Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov. 2021;20:899–919. https://doi.org/10.1038/s41573-021-00155-y.
Article
CAS
Google Scholar
Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W, DeSimone JM. Mediating passive tumor accumulation through particle size, tumor type, and location. Nano Lett. 2017;17:2879–86. https://doi.org/10.1021/acs.nanolett.7b00021.
Article
CAS
Google Scholar
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45:1457–501. https://doi.org/10.1039/C5CS00798D.
Article
CAS
Google Scholar
Hagan CTt, Medik YB, Wang AZ,. Nanotechnology approaches to improving cancer immunotherapy. Adv Cancer Res. 2018;139:35–56. https://doi.org/10.1016/bs.acr.2018.05.003.
Article
CAS
Google Scholar
Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19:1597–608. https://doi.org/10.1038/nm.3409.
Article
CAS
Google Scholar
Travis K. Deciphering immunology’s dirty little secret. Scientist. 2007;21:46–51.
Google Scholar
Shukoor MI, Natalio F, Tahir MN, Barz M, Weber S, Brochhausen C, et al. CpG-DNA loaded multifunctional MnO nanoshuttles for TLR9-specific cellular cargo delivery, selective immune-activation and MRI. J Mater Chem A. 2012. https://doi.org/10.1039/c2jm16903g.
Article
Google Scholar
Zhang X, Wu F, Men K, Huang R, Zhou B, Zhang R, et al. Modified Fe3O4 magnetic nanoparticle delivery of CpG inhibits tumor growth and spontaneous pulmonary metastases to enhance immunotherapy. Nanoscale Res Lett. 2018;13:240. https://doi.org/10.1186/s11671-018-2661-8.
Article
CAS
Google Scholar
Ruiz-de-Angulo A, Zabaleta A, Gomez-Vallejo V, Llop J, Mareque-Rivas JC. Microdosed lipid-coated (67)Ga-magnetite enhances antigen-specific immunity by image tracked delivery of antigen and CpG to lymph nodes. ACS Nano. 2016;10:1602–18. https://doi.org/10.1021/acsnano.5b07253.
Article
CAS
Google Scholar
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76–109. https://doi.org/10.1016/j.jconrel.2019.03.015.
Article
CAS
Google Scholar
Liu JF, Jang B, Issadore D, Tsourkas A. Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1571. https://doi.org/10.1002/wnan.1571.
Article
Google Scholar
Shi R, Hong L, Wu D, Ning X, Chen Y, Lin T, et al. Enhanced immune response to gastric cancer specific antigen Peptide by coencapsulation with CpG oligodeoxynucleotides in nanoemulsion. Cancer Biol Ther. 2005;4:218–24. https://doi.org/10.4161/cbt.4.2.1472.
Article
CAS
Google Scholar
Jin H, Qian Y, Dai Y, Qiao S, Huang C, Lu L, et al. Magnetic enrichment of dendritic cell vaccine in lymph node with fluorescent-magnetic nanoparticles enhanced cancer immunotherapy. Theranostics. 2016;6:2000–14. https://doi.org/10.7150/thno.15102.
Article
CAS
Google Scholar
Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer. 2011;10:3. https://doi.org/10.1186/1476-4598-10-3.
Article
CAS
Google Scholar
White EE, Pai A, Weng Y, Suresh AK, Van Haute D, Pailevanian T, et al. Functionalized iron oxide nanoparticles for controlling the movement of immune cells. Nanoscale. 2015;7:7780–9. https://doi.org/10.1039/c3nr04421a.
Article
CAS
Google Scholar
Seong SY, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78. https://doi.org/10.1038/nri1372.
Article
CAS
Google Scholar
Filin IY, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Recent advances in experimental dendritic cell vaccines for cancer. Front Oncol. 2021;11:730824–730824. https://doi.org/10.3389/fonc.2021.730824.
Article
Google Scholar
Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29:372–83. https://doi.org/10.1016/j.immuni.2008.08.004.
Article
CAS
Google Scholar
Bae M-Y, Cho N-H, Seong S-Y. Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin Exp Immunol. 2009;157:128–38. https://doi.org/10.1111/j.1365-2249.2009.03943.x.
Article
CAS
Google Scholar
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24. https://doi.org/10.1038/s41577-019-0210-z.
Article
CAS
Google Scholar
Demaria O, Cornen S, Daeron M, Morel Y, Medzhitov R, Vivier E. Harnessing innate immunity in cancer therapy. Nature. 2019;574:45–56. https://doi.org/10.1038/s41586-019-1593-5.
Article
CAS
Google Scholar
Sabry M, Lowdell MW. Killers at the crossroads: The use of innate immune cells in adoptive cellular therapy of cancer. Stem Cells Transl Med. 2020;9:974–84. https://doi.org/10.1002/sctm.19-0423.
Article
CAS
Google Scholar
Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74–95. https://doi.org/10.1038/cr.2016.157.
Article
CAS
Google Scholar
Grippin AJ, Wummer B, Wildes T, Dyson K, Trivedi V, Yang C, et al. Dendritic cell-activating magnetic nanoparticles enable early prediction of antitumor response with magnetic resonance imaging. ACS Nano. 2019;13:13884–98. https://doi.org/10.1021/acsnano.9b05037.
Article
CAS
Google Scholar
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18:215–29. https://doi.org/10.1038/s41571-020-00460-2.
Article
Google Scholar
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18:128. https://doi.org/10.1186/s12943-019-1055-6.
Article
Google Scholar
Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, et al. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nanotechnol. 2011;6:675–82. https://doi.org/10.1038/nnano.2011.149.
Article
CAS
Google Scholar
Noh YW, Jang YS, Ahn KJ, Lim YT, Chung BH. Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials. 2011;32:6254–63. https://doi.org/10.1016/j.biomaterials.2011.05.013.
Article
CAS
Google Scholar
Shevtsov MA, Nikolaev BP, Yakovleva LY, Parr MA, Marchenko YY, Eliseev I, et al. 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J Control Release. 2015;220:329–40. https://doi.org/10.1016/j.jconrel.2015.10.051.
Article
CAS
Google Scholar
Zhao H, Zhao B, Wu L, Xiao H, Ding K, Zheng C, et al. Amplified cancer immunotherapy of a surface-engineered antigenic microparticle vaccine by synergistically modulating tumor microenvironment. ACS Nano. 2019;13:12553–66. https://doi.org/10.1021/acsnano.9b03288.
Article
CAS
Google Scholar
Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy-immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195–207. https://doi.org/10.1038/nrendo.2016.205.
Article
CAS
Google Scholar
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87. https://doi.org/10.1038/nrc.2016.36.
Article
CAS
Google Scholar
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131:58–67. https://doi.org/10.1182/blood-2017-06-741033.
Article
CAS
Google Scholar
Kwek SS, Cha E, Fong L. Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer. 2012;12:289–97. https://doi.org/10.1038/nrc3223.
Article
CAS
Google Scholar
Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005;204:102–15. https://doi.org/10.1111/j.0105-2896.2005.00249.x.
Article
CAS
Google Scholar
Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70. https://doi.org/10.1016/j.molcel.2019.09.030.
Article
CAS
Google Scholar
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018;17:129. https://doi.org/10.1186/s12943-018-0864-3.
Article
CAS
Google Scholar
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer. 2019;18:146. https://doi.org/10.1186/s12943-019-1074-3.
Article
Google Scholar
Jiang Z, Sun H, Yu J, Tian W, Song Y. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14:180. https://doi.org/10.1186/s13045-021-01197-w.
Article
CAS
Google Scholar
Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu H, et al. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol. 2020;11:18. https://doi.org/10.3389/fimmu.2020.00018.
Article
CAS
Google Scholar
Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020;52:742–52. https://doi.org/10.1016/j.immuni.2020.04.011.
Article
CAS
Google Scholar
Veillette A, Chen J. SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 2018;39:173–84. https://doi.org/10.1016/j.it.2017.12.005.
Article
CAS
Google Scholar
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 2021;40:184. https://doi.org/10.1186/s13046-021-01987-7.
Article
CAS
Google Scholar
Feng Y, Xie X, Zhang H, Su Q, Yang G, Wei X, et al. Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy. Biomaterials. 2021;275:120990. https://doi.org/10.1016/j.biomaterials.2021.120990.
Article
CAS
Google Scholar
Chiang CS, Lin YJ, Lee R, Lai YH, Cheng HW, Hsieh CH, et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol. 2018;13:746–54. https://doi.org/10.1038/s41565-018-0146-7.
Article
CAS
Google Scholar
Mohanty S, Yerneni K, Theruvath JL, Graef CM, Nejadnik H, Lenkov O, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 2019;10:36. https://doi.org/10.1038/s41419-018-1285-3.
Article
CAS
Google Scholar
Fu PP, Xia QS, Hwang HM, Ray PC, Yu HT. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. https://doi.org/10.1016/j.jfda.2014.01.005.
Article
CAS
Google Scholar
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, et al. Diverse applications of nanomedicine. ACS Nano. 2017;11:2313–81. https://doi.org/10.1021/acsnano.6b06040.
Article
CAS
Google Scholar
Xiong R, Zhang W, Zhang Y, Zhang Y, Chen Y, He Y, et al. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale. 2019;11:18081–9. https://doi.org/10.1039/c9nr04289j.
Article
CAS
Google Scholar
He Y, Chen X, Zhang Y, Wang Y, Cui M, Li G, et al. Magnetoresponsive nanozyme: Magnetic stimulation on the nanozyme activity of iron oxide nanoparticles. Sci China Life Sci. 2021. https://doi.org/10.1007/s11427-020-1907-6.
Article
Google Scholar
Ji SF, Jiang B, Hao HG, Chen YJ, Dong JC, Mao Y, et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat Catal. 2021;4:407–17. https://doi.org/10.1038/s41929-021-00609-x.
Article
CAS
Google Scholar
Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: New horizons for responsive biomedical applications. Chem Soc Rev. 2019;48:3683–704. https://doi.org/10.1039/C8CS00718G.
Article
CAS
Google Scholar
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96. https://doi.org/10.1038/s41568-022-00459-0.
Article
CAS
Google Scholar
Liang H, Wu X, Zhao G, Feng K, Ni K, Sun X. Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy. J Am Chem Soc. 2021;143:15812–23. https://doi.org/10.1021/jacs.1c07471.
Article
CAS
Google Scholar
Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94. https://doi.org/10.1038/nnano.2016.168.
Article
CAS
Google Scholar
Gianfranca C, Lara C, Emanuele P, Alessandra C, Enrico T, Lidia B, et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica. 2010;95:1814–22. https://doi.org/10.3324/haematol.2010.023879.
Article
CAS
Google Scholar
Laskar A, Eilertsen J, Li W, Yuan XM. SPION primes THP1 derived M2 macrophages towards M1-like macrophages. Biochem Biophys Res Commun. 2013;441:737–42. https://doi.org/10.1016/j.bbrc.2013.10.115.
Article
CAS
Google Scholar
Gu Z, Liu T, Tang J, Yang Y, Song H, Tuong ZK, Fu J, Yu C. On the mechanism of iron oxide-induced macrophage activation the impact of composition and the underlying signaling pathway. J Am Chem Soc. 2019;141:6122–6.
Article
CAS
Google Scholar
Chen BJN, Wang J, Ding J, Gao C, Cheng J, Xia G, Gao F, Zhou Y, Chen Y, Zhou G, Li X, Zhang Y, Tang M, Wang X. The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice. Int J Nanomedicine. 2010;5:593–9.
Article
CAS
Google Scholar
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18:648–59. https://doi.org/10.1038/s41577-018-0046-y.
Article
CAS
Google Scholar
Pol JG, Caudana P, Paillet J, Piaggio E, Kroemer G. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med. 2020. https://doi.org/10.1084/jem.20191247.
Article
Google Scholar
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev. 2021;50:11614–67. https://doi.org/10.1039/d1cs00427a.
Article
CAS
Google Scholar
Thomas R, Park IK, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci. 2013;14:15910–30. https://doi.org/10.3390/ijms140815910.
Article
CAS
Google Scholar
Laurent S, Dutz S, Hafeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166:8–23. https://doi.org/10.1016/j.cis.2011.04.003.
Article
CAS
Google Scholar
Hedayatnasab Z, Abnisa F, Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–96. https://doi.org/10.1016/j.matdes.2017.03.036.
Article
CAS
Google Scholar
Datta NR, Ordonez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41:742–53. https://doi.org/10.1016/j.ctrv.2015.05.009.
Article
CAS
Google Scholar
Sim T, Choi B, Kwon SW, Kim K-S, Choi H, Ross A, et al. Magneto-activation and magnetic resonance imaging of natural killer cells labeled with magnetic nanocomplexes for the treatment of solid tumors. ACS Nano. 2021;15:12780–93. https://doi.org/10.1021/acsnano.1c01889.
Article
CAS
Google Scholar
Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Jpn J Cancer Res. 1998;89:775–82. https://doi.org/10.1111/j.1349-7006.1998.tb03283.x.
Article
CAS
Google Scholar
Pan J, Xu Y, Wu Q, Hu P, Shi J. Mild magnetic hyperthermia-activated innate immunity for liver cancer therapy. J Am Chem Soc. 2021;143:8116–28. https://doi.org/10.1021/jacs.1c02537.
Article
CAS
Google Scholar
Toraya-Brown S, Sheen MR, Zhang P, Chen L, Baird JR, Demidenko E, et al. Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine. 2014;10:1273–85. https://doi.org/10.1016/j.nano.2014.01.011.
Article
CAS
Google Scholar
Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, et al. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Lett. 2019;19:4287–96. https://doi.org/10.1021/acs.nanolett.9b00579.
Article
CAS
Google Scholar