Aghamirza H, Eivazzadeh-Keihan R, Beig A, Fattahi S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. Med Comm. 2022;3:e115.
Google Scholar
Yasamineh S, Kalajahi HG, Yasamineh P, Gholizadeh O, Youshanlouei HR, Matloub SK, Mozafari M, Jokar E, Yazdani Y, Dadashpour M. Spotlight on therapeutic efficiency of mesenchymal stem cells in viral infections with a focus on COVID-19. Stem Cell Res Ther. 2022;13:1–23.
Article
Google Scholar
Hashemi B, Akram F-A, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Reza MAS, Ghazi F. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol. 2021;78:102967.
Google Scholar
Ahmadi K, Farasat A, Rostamian M, Johari B, Madanchi H. Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an in silico drug repurposing study. J Biomol Struct Dyn. 2022;40:5566–76.
Article
CAS
PubMed
Google Scholar
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther. 2021;19(10):1205–17.
Article
CAS
PubMed
Google Scholar
Gallagher ME, Sieben AJ, Nelson KN, Kraay AN, Orenstein WA, Lopman B, Handel A, Koelle K. Indirect benefits are a crucial consideration when evaluating SARS-CoV-2 vaccine candidates. Nat Med. 2021;27:4–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farshadi M, Johari B, Erfani Ezadyar E, Gholipourmalekabadi M, Azami M, Madanchi H, Haramshahi SMA, Yari A, Karimizade A, Nekouian R. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int. 2019;43:1379–92.
Article
CAS
Google Scholar
Nejati K, Rastegar M, Fathi F, Dadashpour M, Arabzadeh A. Nanoparticle-based drug delivery systems to overcome gastric cancer drug resistance. J Drug Deliv Sci Technol. 2022;8:103231.
Article
Google Scholar
Yasamineh S, Yasamineh P, Kalajahi HG, Gholizadeh O, Yekanipour Z, Afkhami H, Eslami M, Kheirkhah AH, Taghizadeh M, Yazdani Y. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharma. 2022;78:121878.
Article
Google Scholar
Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. Nanomed Nanobiotechnol. 2021;7:e1700.
Google Scholar
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Eslaminejad MB, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro-and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. Beilstein J Nanotechnol. 2022;13:363–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahu AK, Sreepadmanabh M, Rai M, Chande A. SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. Virus Dis. 2021;8:1–12.
Google Scholar
Zamani R, Aval SF, Pilehvar-Soltanahmadi Y, Nejati-Koshki K, Zarghami N. Recent advances in cell electrospining of natural and synthetic nanofibers for regenerative medicine. Drug Res. 2018;68:425–35.
Article
CAS
Google Scholar
Chintagunta AD, Nalluru S. Nanotechnology: an emerging approach to combat COVID-19. Emerg Mater. 2021;8:1–12.
Google Scholar
Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID‐19. J Cell Physiol. 2020;235(12):9133–42.
Yousefi B, Banihashemian SZ, Feyzabadi ZK, Hasanpour S, Kokhaei P, Abdolshahi A, Emadi A, Eslami M. Potential therapeutic effect of oxygen-ozone in controlling of COVID-19 disease. Med Gas Res. 2022;12(2):33.
Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen K-Y. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28:465–522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;89:89.
Google Scholar
Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2020;89:1–14.
Google Scholar
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saberiyan M, Safi A, Kamel A, Movahhed-Abbasabad P, Miralimalek M, Afkhami H, Khaledi M, Teimori H. An Overview on the Common Laboratory Parameter Alterations and their Related Molecular Pathways in Screening for COVID-19 Patients. Clin Lab. 2020;66:78.
Article
Google Scholar
Singh V, Allawadhi P, Khurana A, Banothu AK, Bharani KK. Critical neurological features of COVID-19: Role of imaging methods and biosensors for effective diagnosis. Sens Int. 2021;2: 100098.
Article
PubMed
PubMed Central
Google Scholar
Yousefi B, Eslami M. Genetic and structure of novel coronavirus COVID-19 and molecular mechanisms in the pathogenicity of coronaviruses. Rev Med Microbiol. 2022;33(1):e180-8.
Islam MR, Hoque MN, Rahman MS, Alam ARU, Akther M, Puspo JA, Akter S, Sultana M, Crandall KA, Hossain MA. Genome-wide analysis of SARS-CoV-2 virus strains circulating worldwide implicates heterogeneity. Sci Rep. 2020;10:1–9.
Article
Google Scholar
Khaledi M, Yousefi Nojookambari N, Afkhami H, Sameni F, Yazdansetad S. A review on phylogenetic assessment and cytopathogenesis of filoviruses, retroviruses, and coronaviruses transmitted from bat to human. Cell Mol Res. 2021;78:5.
Google Scholar
Kim D, Lee J-Y, Yang J-S, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;78:56.
Google Scholar
Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene reports. 2020;78:100682.
Article
Google Scholar
Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368:409–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z. Molecular architecture of the SARS-CoV-2 virus. Cell. 2020;89:56.
Google Scholar
Bestle D, Heindl MR, Limburg H, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance. 2020;3:11.
Article
Google Scholar
Hosseini P, Rahimi H, Najafabadi MM, Ghorbani A, Najafabadi SK, Faridzadeh A, Arabpour J, Khormali E, Deravi N. Convalescent plasma therapy for COVID-19: lessons from SARS-CoV, MERS-CoV, and H1N1 infection. Infection. 2021;9:10.
Google Scholar
Branson B, Tavakoli R, Khaledi M, Shafiee SM, Afkham H, Rastegar S. The Correlations Between Epidemiological and Clinical Characteristics, laboratory tests and CT Scan reports in the diagnosis of cases 2019 novel coronavirus pneumonia. A Diagnostic Accuracy Study Authorea Preprints. 2021;89:56.
Google Scholar
Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;67:1–7.
Google Scholar
Charelli LE, de Mattos GC, de Jesus S-B, Pinto JC, Balbino TA. Polymeric nanoparticles as therapeutic agents against coronavirus disease. J Nanopart Res. 2022;24:1–15.
Article
Google Scholar
Amirsaadat S, Jafari-Gharabaghlou D, Alijani S, Mousazadeh H, Dadashpour M, Zarghami N. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells. J Drug Deliv Sci Technol. 2021;61: 102107.
Article
CAS
Google Scholar
Samadzadeh S, Mousazadeh H, Ghareghomi S, Dadashpour M, Babazadeh M, Zarghami N. In vitro anticancer efficacy of Metformin-loaded PLGA nanofibers towards the post-surgical therapy of lung cancer. J Drug Deliv Sci Technol. 2021;61: 102318.
Article
CAS
Google Scholar
Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31:2563–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Souza GAP, Rocha RP, Gonçalves RL, Ferreira CS, de Mello SB, de Castro RFG, Rodrigues JFV, Júnior JCVV, Malaquias LCC, Abrahão JS. Nanoparticles as vaccines to prevent arbovirus infection: a long road ahead. Pathogens. 2021;10:36.
Article
PubMed
PubMed Central
Google Scholar
Abo-zeid Y, Garnett MC. Polymer nanoparticle as a delivery system for ribavirin: do nanoparticle avoid uptake by Red Blood Cells? J Drug Deliv Sci Technol. 2020;56: 101552.
Article
CAS
Google Scholar
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng, C. 2020;112: 110924.
Article
CAS
Google Scholar
Chen N, Zheng Y, Yin J, Li X, Zheng C. Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods. 2013;193:470–7.
Article
CAS
PubMed
Google Scholar
Jafari-Gharabaghlou D, Pilehvar-Soltanahmadi Y, Dadashpour M, Mota A, Vafajouy-Jamshidi S, Faramarzi L, Rasouli S, Zarghami N. Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iran J Basic Med Sci. 2018;21:1167.
PubMed
PubMed Central
Google Scholar
Javan N, Khadem Ansari MH, Dadashpour M, Khojastehfard M, Bastami M, Rahmati-Yamchi M, Zarghami N. Synergistic antiproliferative effects of co-nanoencapsulated curcumin and chrysin on mda-mb-231 breast cancer cells through upregulating mir-132 and mir-502c. Nutr Cancer. 2019;71:1201–13.
Article
CAS
PubMed
Google Scholar
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release. 2021;331:30–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim J-H, Song H. Antiviral potential of nanoparticles—Can nanoparticles fight against coronaviruses? Nanomaterials. 2020;10:1645.
Article
CAS
PubMed Central
Google Scholar
Pourgholi A, Dadashpour M, Mousapour A, Amandi AF, Zarghami N. Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: insight into the apoptotic genes targets. Asian Pac J Cancer Prevent. 2021;22:2587.
Article
CAS
Google Scholar
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased pro-apoptotic and anti-proliferative activities of simvastatin encapsulated PCL-PEG Nanoparticles on human breast cancer adenocarcinoma cells. J Cluster Sci. 2022;8:1–12.
Google Scholar
Surnar B, Kamran MZ, Shah AS, Basu U, Kolishetti N, Deo S, Jayaweera DT, Daunert S, Dhar S. Orally administrable therapeutic synthetic nanoparticle for Zika virus. ACS Nano. 2019;13:11034–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang G, Campbell GR, Zhang Q, Maule E, Hanna J, Gao W, Zhang L, Spector SA. CD4+ t cell-mimicking nanoparticles broadly neutralize hiv-1 and suppress viral replication through autophagy. MBio. 2020;11:e45.
Article
Google Scholar
Wei X, Zhang G, Ran D, Krishnan N, Fang RH, Gao W, Spector SA, Zhang L. T-Cell-mimicking nanoparticles can neutralize HIV Infectivity. Adv Mater. 2018;30:1802233.
Article
Google Scholar
Sanna V, Satta S, Hsiai T, Sechi M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur J Med Chem. 2022;8:114121.
Article
Google Scholar
Khater SE, El-Khouly A, Abdel-Bar HM, Al-Mahallawi AM, Ghorab DM. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection. Int J Pharm. 2021;607:121023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7:3–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguilera-Correa JJ, Esteban J, Vallet-Regí M. Inorganic and polymeric nanoparticles for human viral and bacterial infections prevention and treatment. Nanomaterials. 2021;11:137.
Article
CAS
PubMed Central
Google Scholar
Thi EP, Mire CE, Lee AC, Geisbert JB, Zhou JZ, Agans KN, Snead NM, Deer DJ, Barnard TR, Fenton KA. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature. 2015;521:362–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Li P, Yu Y, Fu Y, Jiang H, Lu M, Sun Z, Jiang S, Lu L, Wu MX. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science. 2020;367:78.
Article
Google Scholar
Huang H, Zhang C, Yang S, Xiao W, Zheng Q, Song X. The investigation of mRNA vaccines formulated in liposomes administrated in multiple routes against SARS-CoV-2. J Control Release. 2021;335:449–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Yin X-G, Wen Y, Lu J, Zhang R-Y, Zhou S-H, Liao C-M, Wei H-W, Guo J. MPLA-Adjuvanted Liposomes Encapsulating S-Trimer or RBD or S1, but Not S-ECD, Elicit Robust Neutralization Against SARS-CoV-2 and Variants of Concern. J Med Chem. 2022;23:67.
Google Scholar
Thipparaboina R, Chavan RB, Kumar D, Modugula S, Shastri NR. Micellar carriers for the delivery of multiple therapeutic agents. Colloids Surf, B. 2015;135:291–308.
Article
CAS
Google Scholar
Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability. Int J Pharm. 2018;552:39–47.
Article
CAS
PubMed
Google Scholar
Koppisetti RK, Fulcher YG, Van Doren SR. Fusion peptide of SARS-CoV-2 spike rearranges into a wedge inserted in bilayered micelles. J Am Chem Soc. 2021;143:13205–11.
Article
CAS
PubMed
Google Scholar
Li Q, Huang Q, Kang C. Secondary Structures of the Transmembrane Domain of SARS-CoV-2 Spike Protein in Detergent Micelles. Int J Mol Sci. 2022;23:1040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dias AP, da Silva SS, da Silva JV, Parise-Filho R, Ferreira EI, El Seoud O, Giarolla J. Dendrimers in the context of nanomedicine. Int J Pharm. 2020;573: 118814.
Article
CAS
PubMed
Google Scholar
Kandeel M, Al-Taher A, Park BK, Kwon HJ, Al-Nazawi M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J Med Virol. 2020;92:1665–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sepúlveda-Crespo D, Jiménez JL, Gómez R, De La Mata FJ, Majano PL, Muñoz-Fernández MÁ, Gastaminza P. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. Nanomedicine. 2017;13:49–58.
Article
PubMed
Google Scholar
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021;76:2840–54.
Article
CAS
PubMed
Google Scholar
Mignani S, Shi X, Karpus A, Lentini G, Majoral J-P. Functionalized dendrimer platforms as a new forefront arsenal targeting SARS-CoV-2: An Opportunity. Pharmaceutics. 2021;13:1513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30:179–94.
Article
CAS
PubMed
Google Scholar
Kondel R, Shafiq N, Kaur IP, Singh MP, Pandey AK, Ratho RK, Malhotra S. Effect of Acyclovir Solid Lipid Nanoparticles for the Treatment of Herpes Simplex Virus (HSV) Infection in an Animal Model of HSV-1 Infection. Pharma Nanotechnol. 2019;7:389–403.
Article
CAS
Google Scholar
Tulbah AS, Lee W-H. Physicochemical Characteristics and In Vitro Toxicity/Anti-SARS-CoV-2 Activity of Favipiravir Solid Lipid Nanoparticles (SLNs). Pharmaceuticals. 2021;14:1059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulcher JA, Tamshen K, Wollenberg AL, Kickhoefer VA, Mrazek J, Elliott J, Ibarrondo FJ, Anton PA, Rome LH, Maynard HD. Human vault nanoparticle targeted delivery of antiretroviral drugs to inhibit human immunodeficiency virus type 1 infection. Bioconjug Chem. 2019;30:2216–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rungrojcharoenkit K, Sunintaboon P, Ellison D, Macareo L, Midoeng P, Chaisuwirat P, Fernandez S, Ubol S. Development of an adjuvanted nanoparticle vaccine against influenza virus, an in vitro study. PLoS ONE. 2020;15:e0237218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauster D, Klenk S, Ludwig K, Nojoumi S, Behren S, Adam L, Stadtmüller M, Saenger S, Zimmler S, Hönzke K. Phage capsid nanoparticles with defined ligand arrangement block influenza virus entry. Nat Nanotechnol. 2020;15:373–9.
Article
CAS
PubMed
Google Scholar
Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH. Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19. Cellulose. 2022;29:1–20.
Article
Google Scholar
Hanafy NA, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022;198:101–10.
Article
CAS
PubMed
Google Scholar
Poon C, Patel AA. Organic and inorganic nanoparticle vaccines for prevention of infectious diseases. Nano Express. 2020;1:012001.
Article
Google Scholar
Maleki MJ, Ghasemi Y, Pourhassan-Moghaddam M, Asadi N, Dadashpour M, Mohammadi SA, Akbarzadeh A, Zarghami N. Effect of green GO/Au nanocomposite on in-vitro amplification of human DNA. IET Nanobiotechnol. 2019;13:887–90.
Article
PubMed
PubMed Central
Google Scholar
Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A. Biomedical applications of functionalized gold nanoparticles: a review. J Cluster Sci. 2021;45:1–16.
Google Scholar
Ferrando RM, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. Drug Discovery Today. 2021;89:5.
Google Scholar
Lee M-Y, Yang J-A, Jung HS, Beack S, Choi JE, Hur W, Koo H, Kim K, Yoon SK, Hahn SK. Hyaluronic acid–gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano. 2012;6:9522–31.
Article
CAS
PubMed
Google Scholar
Halder A, Das S, Ojha D, Chattopadhyay D, Mukherjee A. Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Mater Sci Eng, C. 2018;89:413–21.
Article
CAS
Google Scholar
Farfán-Castro S, García-Soto MJ, Comas-García M, Arévalo-Villalobos JI, Palestino G, González-Ortega O, Rosales-Mendoza S. Synthesis and immunogenicity assessment of a gold nanoparticle conjugate for the delivery of a peptide from SARS-CoV-2. Nanomedicine. 2021;34:102372.
Article
PubMed
Google Scholar
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol. 2020;164:331–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dadashpour M, Firouzi-Amandi A, Pourhassan-Moghaddam M, Maleki MJ, Soozangar N, Jeddi F, Nouri M, Zarghami N, Pilehvar-Soltanahmadi Y. Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater Sci Eng C. 2018;92:902–12.
Article
CAS
Google Scholar
Pilaquinga F, Morey J, Torres M, Seqqat R. Piña MdLN: Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Nanomed Nanobiotechnol. 2021;78:e1707.
Google Scholar
Allawadhi P, Singh V, Khurana A, Khurana I, Allwadhi S, Kumar P, Banothu AK, Thalugula S, Barani PJ, Naik RR. Silver nanoparticle based multifunctional approach for combating COVID-19. Sens Int. 2021;2: 100101.
Article
PubMed
PubMed Central
Google Scholar
Xiang D, Zheng Y, Duan W, Li X, Yin J, Shigdar S, O’Connor ML, Marappan M, Zhao X, Miao Y. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int J Nanomed. 2013;8:4103.
Article
Google Scholar
Wan C, Tai J, Zhang J, Guo Y, Zhu Q, Ling D, Gu F, Gan J, Zhu C, Wang Y. Silver nanoparticles selectively induce human oncogenic γ-herpesvirus-related cancer cell death through reactivating viral lytic replication. Cell Death Dis. 2019;10:1–16.
Article
Google Scholar
Almanza-Reyes H, Moreno S, Plascencia-López I, Alvarado-Vera M, Patrón-Romero L, Borrego B, Reyes-Escamilla A, Valencia-Manzo D, Brun A, Pestryakov A. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS ONE. 2021;16: e0256401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Sanea MM, Abelyan N, Abdelgawad MA, Musa A, Ghoneim MM, Al-Warhi T, Aljaeed N, Alotaibi OJ, Alnusaire TS, Abdelwahab SF. Strawberry and ginger silver nanoparticles as potential inhibitors for SARS-CoV-2 assisted by in silico modeling and metabolic profiling. Antibiotics. 2021;10:824.
Article
CAS
PubMed
PubMed Central
Google Scholar
AbouAitah K, Swiderska-Sroda A, Kandeil A, Salman AM, Wojnarowicz J, Ali MA, Opalinska A, Gierlotka S, Ciach T, Lojkowski W. Virucidal Action Against Avian Influenza H5N1 virus and immunomodulatory effects of nanoformulations consisting of mesoporous silica nanoparticles loaded with natural prodrugs. Int J Nanomed. 2020;15:5181.
Article
CAS
Google Scholar
Bimbo LM, Denisova OV, Mäkilä E, Kaasalainen M, De Brabander JK, Hirvonen J, Salonen J, Kakkola L, Kainov D, Santos HA. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano. 2013;7:6884–93.
Article
CAS
PubMed
Google Scholar
Agelidis A, Koujah L, Suryawanshi R, Yadavalli T, Mishra YK, Adelung R, Shukla D. An intra-vaginal zinc oxide tetrapod nanoparticles (zoten) and genital herpesvirus cocktail can provide a novel platform for live virus vaccine. Front Immunol. 2019;10:500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norouzi M, Yasamineh S, Montazeri M, Dadashpour M, Sheervalilou R, Abasi M, Pilehvar-Soltanahmadi Y. Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. Mater Sci Eng C. 2019;104: 110007.
Article
CAS
Google Scholar
Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, Das V, Topno R, Madhukar M, Das P. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. 2019;25:325–9.
Article
CAS
PubMed
Google Scholar
Sarkar PK, Das Mukhopadhyay C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. International Nano Letters. 2021;11:197–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Yu Y, Leng T, Li Y, Lee S-T. The Inhibition of SARS-CoV-2 3CL Mpro by graphene and its derivatives from molecular dynamics simulations. ACS Appl Mater Interfaces. 2021;14:191.
Article
PubMed
Google Scholar
Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol. 2013;10:65–71.
Article
CAS
PubMed
Google Scholar
Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Dowlath MJH, Serati-Nouri H. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol. 2021;166:1–24.
Article
Google Scholar
Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat Commun. 2020;11:1–12.
Article
Google Scholar
Portela C, Brites C. Immune response in SARS-CoV-2 infection: the role of interferons type I and type III. Brazil J Infect Dis. 2020;108:78.
Google Scholar
Tufan A. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish J Med Sci. 2020;50:620–32.
Article
CAS
Google Scholar
Izadi M, Tahmasebi S, Pustokhina I, Yumashev AV, Lakzaei T, Alvanegh AG, Roshangar L, Dadashpour M, Yousefi M, Ahmadi M. Changes in Th17 cells frequency and function after ozone therapy used to treat multiple sclerosis patients. Multiple Sclerosis Related Disorders. 2020;46: 102466.
Article
PubMed
Google Scholar
Ahmadpoor P, Rostaing L. Why the immune system fails to mount an adaptive immune response to a Covid-19 infection. Transplant Int. 2020;89:4.
Google Scholar
Tu Y-F, Chien C-S, Yarmishyn AA, Lin Y-Y, Luo Y-H, Lin Y-T, Lai W-Y, Yang D-M, Chou S-J, Yang Y-P. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21:2657.
Article
CAS
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;78:8.
Google Scholar
Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, Chen B, Lu M, Luo Y, Zhang J. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. MedRxiv. 2020;89:4.
Google Scholar
Ko W-C, Rolain J-M, Lee N-Y, Chen P-L, Huang C-T, Lee P-I, Hsueh P-R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents. 2020;34:9.
Google Scholar
Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, Jiang B. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;78:34.
Google Scholar
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:1–5.
Article
CAS
Google Scholar
Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest. 2020;159:e8.
Google Scholar
Khurana I, Allawadhi P, Khurana A, Srivastava AK, Navik U, Banothu AK, Bharani KK. Can bilirubin nanomedicine become a hope for the management of COVID-19? Med Hypotheses. 2021;149: 110534.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;45:1–16.
Google Scholar
Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182(713–721): e719.
Google Scholar
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;5:536.
Google Scholar
Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 vaccines. JAMA. 2021;325:1318–20.
Article
CAS
PubMed
Google Scholar
Chavda VP, Hossain MK, Beladiya J, Apostolopoulos V. Nucleic acid vaccines for COVID-19: a paradigm shift in the vaccine development arena. Biologics. 2021;1:337–56.
Article
Google Scholar
Dzinamarira T, Tungwarara N, Chitungo I, Chimene M, Iradukunda PG, Mashora M, Murewanhema G, Rwibasira GN, Musuka G. Unpacking the Implications of SARS-CoV-2 Breakthrough Infections on COVID-19 Vaccination Programs. Vaccines. 2022;10:252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–27.
Article
CAS
PubMed
Google Scholar
Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci. 2021;7:512–33.
Article
PubMed
PubMed Central
Google Scholar
Chen W-H, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. 2020;7:1–4.
Article
Google Scholar
Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Advan Infect Dis. 2017;4:105–31.
CAS
Google Scholar
Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci. 2021;25: 100964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, Scott JA, Vitale F, Unal MA, Mattevi C. Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano. 2020;14:6483.
Article
Google Scholar
Zhang N-N, Zhang R-R, Zhang Y-F, Ji K, Xiong X-C, Qin Q-S, Gao P, Lu X-S, Zhou H-Y, Song H-F. Rapid development of an updated mRNA vaccine against the SARS-CoV-2 Omicron variant. Cell Res. 2022;8:1–3.
Google Scholar
Sun J, Zheng Q, Madhira V, Olex AL, Anzalone AJ, Vinson A, Singh JA, French E, Abraham AG, Mathew J. Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US. JAMA Intern Med. 2022;182:153–62.
Article
CAS
PubMed
Google Scholar
Ruiz-Hitzky E, Darder M, Wicklein B, Ruiz-Garcia C, Martín-Sampedro R, Del Real G, Aranda P. Nanotechnology Responses to COVID-19. Adv Healthcare Mater. 2020;9:2000979.
Article
CAS
Google Scholar
Khurana A, Allawadhi P, Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today. 2021;38: 101142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, Wirth DM, Chen A, Sack M, Pokorski JK. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15:646–55.
Article
CAS
PubMed
Google Scholar
Abd Ellah NH, Gad SF, Muhammad K. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. 2020;15:2085–102.
Article
CAS
PubMed
Google Scholar
Bowman CJ, Bouressam M, Campion SN, Cappon GD, Catlin NR, Cutler MW, Diekmann J, Rohde CM, Sellers RS, Lindemann C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod Toxicol. 2021;103:28–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kremsner P, Mann P, Bosch J, Fendel R, Gabor JJ, Kreidenweiss A, Kroidl A, Leroux-Roels I, Leroux-Roels G, Schindler C: Phase 1 Assessment of the Safety and Immunogenicity of an mRNA-Lipid Nanoparticle Vaccine Candidate Against SARS-CoV-2 in Human Volunteers. medRxiv 2020.
McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Zhou J, Bouton CR, Rogers P, Polra K. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat Commun. 2020;11:1–7.
Article
Google Scholar
Elia U, Ramishetti S, Rosenfeld R, Dammes N, Bar-Haim E, Naidu GS, Makdasi E, Yahalom-Ronen Y, Tamir H, Paran N. Design of SARS-CoV-2 hFc-Conjugated Receptor-Binding Domain mRNA Vaccine Delivered via Lipid Nanoparticles. ACS Nano. 2021;15:6.
Article
Google Scholar
Park KS, Bazzill JD, Son S, Nam J, Shin SW, Ochyl LJ, Stuckey JA, Meagher JL, Chang L, Song J. Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. J Controlled Release. 2020;330:529.
Article
Google Scholar
Huang WC, Zhou S, He X, Chiem K, Mabrouk MT, Nissly RH, Bird IM, Strauss M, Sambhara S, Ortega J. SARS-CoV-2 RBD neutralizing antibody induction is enhanced by particulate vaccination. Adv Mater. 2020;32:2005637.
Article
CAS
PubMed Central
Google Scholar
Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, Pham TD, Pak JE, Chiu W, Kim PS. A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Cent Sci. 2021;7:183–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geng Q, Tai W, Baxter VK, Shi J, Wan Y, Zhang X, Montgomery SA, Taft-Benz SA, Anderson EJ, Knight AC. Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathog. 2021;17: e1009897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, Zhang X, Deng J, Chen T, Song Z. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity. 2020;53(1315–1330): e1319.
Google Scholar
Tabish TA, Hamblin MR. Multivalent nanomedicines to treat COVID-19: A slow train coming. Nano Today. 2020;35: 100962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim HX, Lim J, Jazayeri SD, Poppema S, Poh CL. Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomed J. 2020;44:18.
Article
PubMed
PubMed Central
Google Scholar
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;11:996.
Google Scholar
Ansari MA, Almatroudi A, Alzohairy MA, AlYahya S, Alomary MN, Al-Dossary HA, Alghamdi S. Lipid-based nano delivery of Tat-peptide conjugated drug or vaccine–promising therapeutic strategy for SARS-CoV-2 treatment. Expert Opin Drug Deliv. 2020;9:1–4.
Google Scholar
Mogheri F, Jokar E, Afshin R, Akbari AA, Dadashpour M, Firouzi-amandi A, Serati-Nouri H, Zarghami N. Co-delivery of metformin and silibinin in dual-drug loaded nanoparticles synergistically improves chemotherapy in human non-small cell lung cancer A549 cells. J Drug Deliv Sci Technol. 2021;66: 102752.
Article
CAS
Google Scholar
Adlravan E, Nejati K, Karimi MA, Mousazadeh H, Abbasi A, Dadashpour M. Potential activity of free and PLGA/PEG nanoencapsulated nasturtium officinale extract in inducing cytotoxicity and apoptosis in human lung carcinoma A549 cells. J Drug Deliv Sci Technol. 2021;61: 102256.
Article
CAS
Google Scholar
Ullah A, Qazi J, Rahman L, Kanaras AG, Khan WS, Hussain I, Rehman A. Nanoparticles-assisted delivery of antiviral-siRNA as inhalable treatment for human respiratory viruses: a candidate approach against SARS-COV-2. Nano Select. 2020;1:612.
Article
PubMed
PubMed Central
Google Scholar
Neufurth M, Wang X, Tolba E, Lieberwirth I, Wang S, Schröder HC, Müller WE. The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations. Biochem Pharmacol. 2020;182: 114215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YY, Park HH, Park W, Kim H, Jang JG, Hong KS, Lee J-Y, Seo HS, Na DH, Kim T-H. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials. 2020;267: 120389.
Article
PubMed
PubMed Central
Google Scholar
Cavalcanti IDL. Pharmaceutical nanotechnology: which products are been designed against COVID-19? J Nanopart Res. 2020;22:1–11.
Article
Google Scholar
Rezaee P, Akbari M, Morad R, Koochaki A, Maaz M, Jamshidi Z. First Principle Simulation of Coated Hydroxychloroquine on Ag, Au and Pt Nanoparticle as a Potential Candidate for Treatment of SARS-CoV-2 (COVID-19). arXiv preprint arXiv:200602343 2020.
Lammers T, Sofias AM, van der Meel R, Schiffelers R, Storm G, Tacke F, Koschmieder S, Brümmendorf TH, Kiessling F, Metselaar JM. Dexamethasone nanomedicines for COVID-19. Nat Nanotechnol. 2020;15:622–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campos EV, Pereira AE, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnol. 2020;18:1–23.
Article
Google Scholar
Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: a review. Environ Res. 2020;191: 110119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials. 2020;10:1072.
Article
CAS
PubMed Central
Google Scholar
Hassanzadeh P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J Control Release. 2020;8:9.
Google Scholar
Palmieri V, Papi M. Can graphene take part in the fight against COVID-19? Nano Today. 2020;33:100883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhavana V, Thakor P, Singh SB, Mehra NK. COVID-19: Pathophysiology, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sci. 2020;8:118336.
Article
Google Scholar
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. Sens Int. 2021;2: 100102.
Article
PubMed
PubMed Central
Google Scholar
Abo-Zeid Y, Ismail NS, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 2020;153: 105465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehranfar A, Izadyar M. Theoretical design of functionalized gold nanoparticles as antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Phys Chem Lett. 2020;11:10284–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Honko A, Zhou J, Gong H, Downs SN, Vasquez JH, Fang RH, Gao W, Griffiths A, Zhang L. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett. 2020;20:5570–4.
Article
CAS
PubMed
Google Scholar
Cai X, Prominski A, Lin Y, Ankenbruck N, Rosenberg J, Chen M, Shi J, Chang EB, Penaloza-MacMaster P, Tian B. A Neutralizing Antibody-Conjugated Photothermal Nanoparticle Captures and Inactivates SARS-CoV-2. Biorxiv. 2020;9:12.
Google Scholar
Chang S-Y, Huang K-Y, Chao T-L, Kao H-C, Pang Y-H, Lu L, Chiu C-L, Huang H-C. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Gut. 2020;89:8.
Google Scholar
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14:7760–82.
Article
CAS
PubMed
Google Scholar
Lauster D, Glanz M, Bardua M, Ludwig K, Hellmund M, Hoffmann U, Hamann A, Böttcher C, Haag R, Hackenberger CP. Multivalent peptide-nanoparticle conjugates for influenza-virus inhibition. Angew Chem Int Ed. 2017;56:5931–6.
Article
CAS
Google Scholar
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 2019;26:1–10.
Article
CAS
Google Scholar
Wang W, Zhou X, Bian Y, Wang S, Chai Q, Guo Z, Wang Z, Zhu P, Peng H, Yan X. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B. Nat Nanotechnol. 2020;15:406–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palacios R, Patiño EG, de Oliveira PR, Conde MTRP, Batista AP, Zeng G, Xin Q, Kallas EG, Flores J, Ockenhouse CF. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac–PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21:1–3.
Article
Google Scholar
Hoai TT, Yen PT, Dao TTB, Long LH, Anh DX, Minh LH, Anh BQ, Thuong NT. Evaluation of the cytotoxic effect of rutin prenanoemulsion in lung and colon cancer cell lines. J Nanomater. 2020;2020:8.
Article
Google Scholar
van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, Avanzato VA, Bushmaker T, Flaxman A, Ulaszewska M. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–82.
Article
PubMed
PubMed Central
Google Scholar
Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, Voysey M, Aley PK, Angus B, Babbage G. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020;396:1979–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586:583–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020;396:1595–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raja AT, Alshamsan A, Al-Jedai A. Current COVID-19 vaccine candidates: implications in the Saudi population. Saudi Pharma J. 2020;28:1743–8.
Article
CAS
Google Scholar
Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;89:9.
Google Scholar
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson KA. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93.
Article
CAS
PubMed
Google Scholar
Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892: 173751.
Article
CAS
PubMed
Google Scholar
Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D. COVID-19 vaccine BNT162b1 elicits human antibody and TH 1 T cell responses. Nature. 2020;586:594–9.
Article
CAS
PubMed
Google Scholar
Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168(1114–1125): e1110.
Google Scholar
Sekimukai H, Iwata-Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki T, Hasegawa H, Niikura K, Arai K, Nagata N. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol. 2020;64:33–51.
Article
CAS
PubMed
Google Scholar
Allawadhi P, Khurana A, Allwadhi S, Joshi K, Packirisamy G, Bharani KK. Nanoceria as a possible agent for the management of COVID-19. Nano Today. 2020;35: 100982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassani N, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N. The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: potential apoptotic and anti-proliferative action. Appl Biochem Biotechnol. 2022:1–6.