Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100.
PubMed
CAS
Google Scholar
Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.
PubMed
CAS
Google Scholar
Schroeder A, Pohler O, Sutter F. Tissue reaction to an implant of a titanium hollow cylinder with a titanium surface spray layer. SSO Schweiz Monatsschr Zahnheilkd. 1976;86(7):713–27.
PubMed
CAS
Google Scholar
Fiorillo L, Cicciu M, Tozum TF, Saccucci M, Orlando C, Romano GL, et al. Endosseous Dental Implant materials and clinical outcomes of different alloys: a systematic review. Materials (Basel). 2022. https://doi.org/10.3390/ma15051979.
Article
PubMed
PubMed Central
Google Scholar
Listgarten MA, Lang NP, Schroeder HE, Schroeder A. Periodontal tissues and their counterparts around endosseous implants [corrected and republished with original paging, article orginally printed in Clin Oral Implants Res 1991 Jan-Mar;2(1):1-19]. Clin Oral Implants Res. 1991;2(3):1–19.
Article
PubMed
CAS
Google Scholar
Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Perio 2000 dontol 2017;73(1):22–40.
Google Scholar
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale. 2017;9(46):18129–52.
Article
PubMed
CAS
Google Scholar
Miron RJ, Zohdi H, Fujioka-Kobayashi M, Bosshardt DD. Giant cells around bone biomaterials: osteoclasts or multi-nucleated giant cells? Acta Biomater. 2016;46:15–28.
Article
PubMed
CAS
Google Scholar
Miron RJ, Bosshardt DD. OsteoMacs:key players around bone biomaterials. Biomaterials. 2016;82:1–19.
Article
PubMed
CAS
Google Scholar
Gruber R. Osteoimmunology: inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol. 2019;46(Suppl 21):52–69.
Article
PubMed
Google Scholar
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory biomaterials for tissue repair. Chem Rev. 2021;121(18):11305–35.
Article
PubMed
CAS
Google Scholar
Madel MB, Ibanez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front Immunol. 2019;10:1408.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sims NA, Martin TJ. Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol. 2020;82:507–29.
Article
PubMed
CAS
Google Scholar
Chen Z, Bachhuka A, Han S, Wei F, Lu S, Visalakshan RM, et al. Tuning chemistry and topography of tanoengineered surfaces to manipulate Immune response for bone regeneration applications. ACS Nano. 2017;11(5):4494–506.
Article
PubMed
CAS
Google Scholar
He Y, Li Z, Ding X, Xu B, Wang J, Li Y, et al. Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin beta1/FAKpY397/MAPK pathway. Bioact Mater. 2022;8:109–23.
Article
PubMed
CAS
Google Scholar
Chen X, Wang W, Cheng S, Dong B, Li CY. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation. ACS Nano. 2013;7(9):8251–7.
Article
PubMed
CAS
Google Scholar
Shi M, Song W, Han T, Chang B, Li G, Jin J, et al. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells. Acta Biomater. 2017;54:175–85.
Article
PubMed
CAS
Google Scholar
Ma QL, Fang L, Jiang N, Zhang L, Wang Y, Zhang YM, et al. Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces. Biomaterials. 2018;154:234–47.
Article
PubMed
CAS
Google Scholar
Zhu Y, Liang H, Liu X, Wu J, Yang C, Wong TM, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration. Sci Adv. 2021;7(14):eabf6654.
Article
PubMed
CAS
Google Scholar
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.
Article
PubMed
CAS
Google Scholar
Yang Y, Xiao Y. Biomaterials regulating bone hematoma for osteogenesis. Adv Healthc Mater. 2020. https://doi.org/10.1002/adhm.202000726.
Article
PubMed
PubMed Central
Google Scholar
Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003;14(3):251–62.
Article
PubMed
Google Scholar
Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res. 2011;22(4):357–64.
Article
PubMed
Google Scholar
Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22(4):349–56.
Article
PubMed
Google Scholar
Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399–410.
Article
PubMed
CAS
Google Scholar
Chen ZT, Klein T, Murray RZ, Crawford R, Chang J, Wu CT, et al. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today. 2016;19(6):304–21.
Article
CAS
Google Scholar
Stout RD, Watkins SK, Suttles J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol. 2009;86(5):1105–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lapinet JA, Scapini P, Calzetti F, Perez O, Cassatella MA. Gene expression and production of tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-8, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and gamma interferon-inducible protein 10 by human neutrophils stimulated with group B meningococcal outer membrane vesicles. Infect Immun. 2000;68(12):6917–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kobayashi SD, Voyich JM, Burlak C, DeLeo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005;53(6):505–17.
PubMed
CAS
Google Scholar
Yamashiro S, Kamohara H, Wang JM, Yang D, Gong WH, Yoshimura T. Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses. J Leukoc Biol. 2001;69(5):698–704.
Article
PubMed
CAS
Google Scholar
Hamilton JA. Nondisposable materials, chronic inflammation, and adjuvant action. J Leukoc Biol. 2003;73(6):702–12.
Article
PubMed
CAS
Google Scholar
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.
Article
PubMed
CAS
Google Scholar
Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: considering more than macrophages. Acta Biomater. 2021;133:208–21.
Article
PubMed
CAS
Google Scholar
Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res. 2001;16(6):1004–14.
Article
PubMed
CAS
Google Scholar
Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, et al. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget. 2017;8(34):57693–706.
Article
PubMed
PubMed Central
Google Scholar
Liang B, Wang H, Wu D, Wang Z. Macrophage M1/M2 polarization dynamically adapts to changes in microenvironment and modulates alveolar bone remodeling after dental implantation. J Leukoc Biol. 2021;110(3):433–47.
Article
PubMed
CAS
Google Scholar
Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A. Bone Immune response to materials, part I: Titanium, PEEK and copper in comparison to Sham at 10 days in rabbit tibia. J Clin Med. 2018;7(12):526.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Li Y, Feng Y, Cheng H, Li D. The role of macrophages in osseointegration of dental implants: an experimental study in vivo. J Biomed Mater Res A. 2020;108(11):2206–16.
Article
PubMed
CAS
Google Scholar
Brown BN, Badylak SF. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 2013;9(2):4948–55.
Article
PubMed
CAS
Google Scholar
Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194–207.
Article
PubMed
CAS
Google Scholar
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40(2):274–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The myeloid cell compartment-cell by cell. Annu Rev Immunol. 2019;37:269–93.
Article
PubMed
CAS
Google Scholar
Qiao W, Xie H, Fang J, Shen J, Li W, Shen D, et al. Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials. 2021;276:121038.
Article
PubMed
CAS
Google Scholar
Cappariello A, Maurizi A, Veeriah V, Teti A. The great beauty of the osteoclast. Arch Biochem Biophys. 2014;558:70–8.
Article
PubMed
CAS
Google Scholar
Tsurukai T, Udagawa N, Matsuzaki K, Takahashi N, Suda T. Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab. 2000;18(4):177–84.
Article
PubMed
CAS
Google Scholar
An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016;128(12):1590–603.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones SJ, Boyde A, Ali NN. The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts. Anat Embryol (Berl). 1984;170(3):247–56.
Article
PubMed
CAS
Google Scholar
Razzouk S, Lieberherr M, Cournot G. Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol. 1999;78(4):249–55.
Article
PubMed
CAS
Google Scholar
Chambers TJ, Thomson BM, Fuller K. Effect of substrate composition on bone resorption by rabbit osteoclasts. J Cell Sci. 1984;70:61–71.
Article
PubMed
CAS
Google Scholar
Nakamura I, Takahashi N, Sasaki T, Jimi E, Kurokawa T, Suda T. Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J Bone Miner Res. 1996;11(12):1873–9.
Article
PubMed
CAS
Google Scholar
Yovich S, Seydel U, Papadimitriou JM, Nicholson GC, Wood DJ, Zheng MH. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization. Histochem J. 1998;30(4):267–73.
Article
PubMed
CAS
Google Scholar
Takito J, Inoue S, Nakamura M. The Sealing Zone in osteoclasts: a Self-Organized structure on the bone. Int J Mol Sci. 2018;19(4):984.
Article
PubMed
PubMed Central
Google Scholar
Sanjay A, Houghton A, Neff L, DiDomenico E, Bardelay C, Antoine E, et al. Cbl associates with Pyk2 and src to regulate src kinase activity, alpha(v)beta(3) integrin-mediated signaling, cell adhesion, and osteoclast motility. J Cell Biol. 2001;152(1):181–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guilliams M, Thierry GR, Bonnardel J, Bajenoff M. Establishment and maintenance of the Macrophage Niche. Immunity. 2020;52(3):434–51.
Article
PubMed
CAS
Google Scholar
Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 2013;123(2):666–81.
PubMed
PubMed Central
CAS
Google Scholar
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horwood NJ. Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol. 2016;51(1):79–86.
Article
PubMed
CAS
Google Scholar
Guihard P, Danger Y, Brounais B, David E, Brion R, Delecrin J, et al. Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells. 2012;30(4):762–72.
Article
PubMed
CAS
Google Scholar
Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, et al. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. Am J Pathol. 2015;185(3):765–75.
Article
PubMed
CAS
Google Scholar
Vasse M, Pourtau J, Trochon V, Muraine M, Vannier JP, Lu H, et al. Oncostatin M induces angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol. 1999;19(8):1835–42.
Article
PubMed
CAS
Google Scholar
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, et al. Macrophage-Osteoclast Associations: Origin, polarization, and subgroups. Front Immunol. 2021;12:778078.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.
Article
PubMed
CAS
Google Scholar
Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12.
Article
PubMed
CAS
Google Scholar
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200.
Article
PubMed
CAS
Google Scholar
Kim J, Kim HN, Lim KT, Kim Y, Seonwoo H, Park SH, et al. Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep. 2013;3:3552.
Article
PubMed
PubMed Central
Google Scholar
Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2013;65(4):536–58.
Article
PubMed
CAS
Google Scholar
Luo J, He Y, Meng F, Yan N, Zhang Y, Song W. The role of autophagy in M2 polarization of macrophages induced by Micro/Nano Topography. Int J Nanomedicine. 2020;15:7763–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng CJ, Lin RC, Zhang M, Qin C, Yao QQ, Wang LM, et al. Micro/Nanometer-Structured Scaffolds for Regeneration of both cartilage and subchondral bone. Adv Funct Mater. 2019. https://doi.org/10.1002/adfm.201806068.
Article
Google Scholar
Gupta S, Noumbissi S, Kunrath MF. Nano modified zirconia dental implants: advances and the frontiers for rapid osseointegration. Med Devices Sens. 2020. https://doi.org/10.1002/mds3.10076.
Article
Google Scholar
Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019;196:80–9.
Article
PubMed
CAS
Google Scholar
Gotfredsen K, Nimb L, Hjorting-Hansen E, Jensen JS, Holmen A. Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs. Clin Oral Implants Res. 1992;3(2):77–84.
Article
PubMed
CAS
Google Scholar
Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res. 1998;40(1):1–11.
Article
PubMed
CAS
Google Scholar
Chiang HJ, Hsu HJ, Peng PW, Wu CZ, Ou KL, Cheng HY, et al. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: characterization, biomechanical analysis and histological evaluation in pigs. J Biomed Mater Res A. 2016;104(2):397–405.
Article
PubMed
CAS
Google Scholar
Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Engl. 2005;44(45):7463–5.
Article
PubMed
CAS
Google Scholar
Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, Macmanus-Driscoll JL. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology. 2010;21(5):055601.
Article
PubMed
Google Scholar
Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl. 2005;44(14):2100–2.
Article
PubMed
CAS
Google Scholar
Souza JCM, Sordi MB, Kanazawa M, Ravindran S, Henriques B, Silva FS, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112–31.
Article
PubMed
CAS
Google Scholar
Lai YK, Sun L, Chen C, Nie CG, Zuo J, Lin CJ. Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. Appl Surf Sci. 2005;252(4):1101–6.
Article
CAS
Google Scholar
Sjostrom T, Dalby MJ, Hart A, Tare R, Oreffo RO, Su B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009;5(5):1433–41.
Article
PubMed
CAS
Google Scholar
Sun YS, Liu JF, Wu CP, Huang HH. Nanoporous surface topography enhances bone cell differentiation on Ti-6Al-7Nb alloy in bone implant applications. J Alloy Compd. 2015;643:124-S32.
Article
Google Scholar
Berardi D, De Benedittis S, Scoccia A, Perfetti G, Conti P. New laser-treated implant surfaces: a histologic and histomorphometric pilot study in rabbits. Clin Invest Med. 2011;34(4):E202.
Article
PubMed
Google Scholar
Tsai MH, Haung CF, Shyu SS, Chou YR, Lin MH, Peng PW, et al. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium. Mater Charact. 2015;106:463–9.
Article
CAS
Google Scholar
Xie K, Wang N, Guo Y, Zhao S, Tan J, Wang L, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study. Bioact Mater. 2022;8:140–52.
Article
PubMed
CAS
Google Scholar
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016;60(1):12–9.
Article
PubMed
Google Scholar
Weng L, Webster TJ. Nanostructured magnesium has fewer detrimental effects on osteoblast function. Int J Nanomedicine. 2013;8:1773–81.
PubMed
PubMed Central
Google Scholar
Ouyang L, Chen M, Wang D, Lu T, Wang H, Meng F, et al. Nano Textured PEEK Surface for enhanced osseointegration. ACS Biomater Sci Eng. 2019;5(3):1279–89.
Article
PubMed
CAS
Google Scholar
Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EY, et al. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials. 2013;34(37):9264–77.
Article
PubMed
CAS
Google Scholar
Wang K, Hou WD, Wang X, Han C, Vuletic I, Su N, et al. Overcoming foreign-body reaction through nanotopography: biocompatibility and immunoisolation properties of a nanofibrous membrane. Biomaterials. 2016;102:249–58.
Article
PubMed
CAS
Google Scholar
Abagnale G, Steger M, Nguyen VH, Hersch N, Sechi A, Joussen S, et al. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials. 2015;61:316–26.
Article
PubMed
CAS
Google Scholar
Cunha A, Zouani OF, Plawinski L, Botelho do Rego AM, Almeida A, Vilar R, et al. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomed (Lond). 2015;10(5):725–39.
Article
CAS
Google Scholar
Dumas V, Guignandon A, Vico L, Mauclair C, Zapata X, Linossier MT, et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed Mater. 2015;10(5):055002.
Article
PubMed
Google Scholar
Karazisis D, Ballo AM, Petronis S, Agheli H, Emanuelsson L, Thomsen P, et al. The role of well-defined nanotopography of titanium implants on osseointegration: cellular and molecular events in vivo. Int J Nanomedicine. 2016;11:1367–82.
PubMed
PubMed Central
CAS
Google Scholar
Lamers E, Walboomers XF, Domanski M, te Riet J, van Delft FC, Luttge R, et al. The influence of nanoscale grooved substrates on osteoblast behavior and extracellular matrix deposition. Biomaterials. 2010;31(12):3307–16.
Article
PubMed
CAS
Google Scholar
Dalby MJ, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials. 2006;27(15):2980–7.
Article
PubMed
CAS
Google Scholar
Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, Hengstebeck RW, et al. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials. 2007;28(10):1787–97.
Article
PubMed
CAS
Google Scholar
Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci. 2018;6(2):250–64.
Article
PubMed
CAS
Google Scholar
Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1(2):211–22.
Article
PubMed
CAS
Google Scholar
Matschegewski C, Staehlke S, Loeffler R, Lange R, Chai F, Kern DP, et al. Cell architecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials. 2010;31(22):5729–40.
Article
PubMed
CAS
Google Scholar
Reznikov N, Bilton M, Lari L, Stevens MM, Kroger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science. 2018;360:6388.
Article
Google Scholar
Gao A, Liao Q, Xie L, Wang G, Zhang W, Wu Y, et al. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials. 2020;230:119642.
Article
PubMed
CAS
Google Scholar
Ion R, Stoian AB, Dumitriu C, Grigorescu S, Mazare A, Cimpean A, et al. Nanochannels formed on TiZr alloy improve biological response. Acta Biomater. 2015;24:370–7.
Article
PubMed
CAS
Google Scholar
Chen Z, Ni S, Han S, Crawford R, Lu S, Wei F, et al. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. Nanoscale. 2017;9(2):706–18.
Article
PubMed
CAS
Google Scholar
Pujari S, Hoess A, Shen J, Thormann A, Heilmann A, Tang L, et al. Effects of nanoporous alumina on inflammatory cell response. J Biomed Mater Res A. 2014;102(11):3773–80.
Article
PubMed
Google Scholar
McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 2013;110(43):17253–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.
Article
PubMed
PubMed Central
Google Scholar
Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13(10):722–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ariganello MB, Guadarrama Bello D, Rodriguez-Contreras A, Sadeghi S, Isola G, Variola F, et al. Surface nanocavitation of titanium modulates macrophage activity. Int J Nanomedicine. 2018;13:8297–308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miao X, Wang D, Xu L, Wang J, Zeng D, Lin S, et al. The response of human osteoblasts, epithelial cells, fibroblasts, macrophages and oral bacteria to nanostructured titanium surfaces: a systematic study. Int J Nanomedicine. 2017;12:1415–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Zhang D, Xiang Q, Zhong Z, Liao Y. Review of water-assisted crystallization for TiO2 nanotubes. Nanomicro Lett. 2018;10(4):77.
PubMed
PubMed Central
CAS
Google Scholar
Xu SP, Ng JW, Zhang XW, Bai HW, Sun DD. Adsorption and photocatalytic degradation of Acid Orange 7 over hydrothermally synthesized mesoporous TiO2 nanotube. Colloid Surf A. 2011;379(1–3):169–75.
Article
CAS
Google Scholar
Peng T, Hasegawa A, Qiu J, Hirao K. Fabrication of titania tubules with high surface area and well-developed mesostructural walls by surfactant-mediated templating method. Chem Mater. 2003;15(10):2011–6.
Article
CAS
Google Scholar
Macak JM, Zlamal M, Krysa J, Schmuki P. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small. 2007;3(2):300–4.
Article
PubMed
CAS
Google Scholar
Neacsu P, Mazare A, Cimpean A, Park J, Costache M, Schmuki P, et al. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int J Biochem Cell Biol. 2014;55:187–95.
Article
PubMed
CAS
Google Scholar
Ma QL, Zhao LZ, Liu RR, Jin BQ, Song W, Wang Y, et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials. 2014;35(37):9853–67.
Article
PubMed
CAS
Google Scholar
Wang J, Meng F, Song W, Jin J, Ma Q, Fei D, et al. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int J Nanomedicine. 2018;13:4029–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu WL, Wang N, Gao P, Li CY, Zhao HS, Zhang ZT. Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Prolif. 2015;48(1):95–104.
Article
PubMed
CAS
Google Scholar
Yao SL, Feng XJ, Li WH, Wang LN, Wang XM. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays. Front Mater Sci. 2017;11(4):318–27.
Article
Google Scholar
Neacsu P, Mazare A, Schmuki P, Cimpean A. Attenuation of the macrophage inflammatory activity by TiO(2) nanotubes via inhibition of MAPK and NF-kappaB pathways. Int J Nanomedicine. 2015;10:6455–67.
PubMed
PubMed Central
CAS
Google Scholar
Yu WP, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, et al. Titanium dioxide nanotubes promote M2 polarization by inhibiting macrophage glycolysis and ultimately accelerate endothelialization. Immun Inflamm Dis. 2021;9(3):746–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu WC, Dong X, Ding JL, Liu JC, Xu JJ, Tang YH, et al. Nanotubular TiO2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. Int J Nanomedicine. 2019;14:441–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen X, Yu Y, Ma P, Luo Z, Hu Y, Li M, et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids Surf B Biointerfaces. 2019;180:39–48.
Article
PubMed
CAS
Google Scholar
Necula MG, Mazare A, Negrescu AM, Mitran V, Ozkan S, Trusca R, et al. Macrophage-like cells are responsive to Titania Nanotube Intertube Spacing-An in Vitro Study. Int J Mol Sci. 2022;23(7):3558.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elangovan S, D’Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47.
Article
PubMed
CAS
Google Scholar
Chong LY, Chien LY, Chung MC, Liang K, Lim JC, Fu JH, et al. Controlling the proliferation and differentiation stages to initiate periodontal regeneration. Connect Tissue Res. 2013;54(2):101–7.
Article
PubMed
CAS
Google Scholar
Sun SJ, Yu WQ, Zhang YL, Jiang XQ, Zhang FQ. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif. 2013;46(6):685–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang C, Zhao C, Wang X, Shi M, Zhu Y, Jing L, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale. 2019;11(38):17699–708.
Article
PubMed
CAS
Google Scholar
Gao L, Li M, Yin L, Zhao C, Chen J, Zhou J, et al. Dual-inflammatory cytokines on TiO2 nanotube-coated surfaces used for regulating macrophage polarization in bone implants. J Biomed Mater Res A. 2018;106(7):1878–86.
Article
PubMed
CAS
Google Scholar
Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int. 2007;56(11):1349–60.
Article
CAS
Google Scholar
Sadat-Shojai M, Khorasani MT, Jamshidi A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem Eng J. 2016;289:38–47.
Article
CAS
Google Scholar
Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–82.
Article
PubMed
CAS
Google Scholar
Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C, et al. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces. 2016;8(37):24415–25.
Article
PubMed
CAS
Google Scholar
Prajatelistia E, Sanandiya ND, Nurrochman A, Marseli F, Choy S, Hwang DS. Biomimetic Janus chitin nanofiber membrane for potential guided bone regeneration application. Carbohydr Polym. 2021;251:117032.
Article
PubMed
CAS
Google Scholar
Chen S, John JV, McCarthy A, Xie J. New forms of electrospun nanofiber materials for biomedical applications. J Mater Chem B. 2020;8(17):3733–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartneck M, Heffels KH, Pan Y, Bovi M, Zwadlo-Klarwasser G, Groll J. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials. 2012;33(16):4136–46.
Article
PubMed
CAS
Google Scholar
Fuentes-Duculan J, Suarez-Farinas M, Zaba LC, Nograles KE, Pierson KC, Mitsui H, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol. 2010;130(10):2412–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, et al. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules. 2011;12(5):1900–11.
Article
PubMed
CAS
Google Scholar
Garg K, Pullen NA, Oskeritzian CA, Ryan JJ, Bowlin GL. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials. 2013;34(18):4439–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Izadpanahi M, Seyedjafari E, Arefian E, Hamta A, Hosseinzadeh S, Kehtari M, et al. Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater Sci Eng C Mater Biol Appl. 2018;93:686–703.
Article
PubMed
CAS
Google Scholar
Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater. 2019;83:435–55.
Article
PubMed
CAS
Google Scholar
Luu TU, Gott SC, Woo BW, Rao MP, Liu WF. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces. 2015;7(51):28665–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamers E, Walboomers XF, Domanski M, Prodanov L, Melis J, Luttge R, et al. In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine. 2012;8(3):308–17.
Article
PubMed
CAS
Google Scholar
Chen S, Jones JA, Xu Y, Low HY, Anderson JM, Leong KW. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 2010;31(13):3479–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das Gupta K, Shakespear MR, Iyer A, Fairlie DP, Sweet MJ. Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunology. 2016;5(1):e62.
Article
PubMed
PubMed Central
Google Scholar
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci. 2015;72(7):1303–16.
Article
PubMed
CAS
Google Scholar
Lee S, Choi J, Shin S, Im YM, Song J, Kang SS, et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium. Acta Biomater. 2011;7(5):2337–44.
Article
PubMed
CAS
Google Scholar
Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The role of surface nanotopography and chemistry on primary neutrophil and macrophage cellular responses. Adv Healthc Mater. 2016;5(8):956–65.
Article
PubMed
CAS
Google Scholar
Ni S, Zhai D, Huan Z, Zhang T, Chang J, Wu C. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. Nanoscale. 2020;12(31):16474–88.
Article
PubMed
CAS
Google Scholar
Rice JM, Hunt JA, Gallagher JA, Hanarp P, Sutherland DS, Gold J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials. 2003;24(26):4799–818.
Article
PubMed
CAS
Google Scholar
Zhang M, Sun Q, Liu Y, Chu Z, Yu L, Hou Y, et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials. 2021;268:120543.
Article
PubMed
CAS
Google Scholar
Lou HY, Zhao W, Li X, Duan L, Powers A, Akamatsu M, et al. Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc Natl Acad Sci U S A. 2019;116(46):23143–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Kamano Y, et al. Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues. Acta Biomater. 2022;137:316–30.
Article
PubMed
CAS
Google Scholar
Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, et al. Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials. 2010;31(11):2999–3007.
Article
PubMed
CAS
Google Scholar
Ciapetti G, Di Pompo G, Avnet S, Martini D, Diez-Escudero A, Montufar EB, et al. Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates. Acta Biomater. 2017;50:102–13.
Article
PubMed
CAS
Google Scholar
Costa-Rodrigues J, Carmo S, Perpetuo IP, Monteiro FJ, Fernandes MH. Osteoclastogenic differentiation of human precursor cells over micro- and nanostructured hydroxyapatite topography. Biochim Biophys Acta. 2016;1860(4):825–35.
Article
PubMed
CAS
Google Scholar
Chen F, Wang M, Wang J, Chen X, Li X, Xiao Y, et al. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B. 2019;7(47):7574–87.
Article
PubMed
CAS
Google Scholar
Zimmer G, Rohrhofer A, Lewis K, Goessl A, Hoffmann O. The surface microporosity of ceramic biomaterials influences the resorption capacity of osteoclasts. J Biomed Mater Res A. 2013;101(12):3365–71.
Article
PubMed
Google Scholar
Yu X, Xu R, Zhang Z, Jiang Q, Liu Y, Yu X, et al. Different cell and tissue behavior of Micro-/Nano-Tubes and Micro-/Nano-Nets topographies on selective laser melting titanium to enhance osseointegration. Int J Nanomedicine. 2021;16:3329–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silverwood RK, Fairhurst PG, Sjostrom T, Welsh F, Sun Y, Li G, et al. Analysis of Osteoclastogenesis/Osteoblastogenesis on nanotopographical Titania surfaces. Adv Healthc Mater. 2016;5(8):947–55.
Article
PubMed
CAS
Google Scholar
Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2 nanotube surfaces: 15 nm–an optimal length scale of surface topography for cell adhesion and differentiation. Small. 2009;5(6):666–71.
Article
PubMed
CAS
Google Scholar
Li Y, Li F, Zhang C, Gao B, Tan P, Mi B, et al. The dimension of Titania Nanotubes influences implant success for osteoclastogenesis and osteogenesis patients. J Nanosci Nanotechnol. 2015;15(6):4136–42.
Article
PubMed
CAS
Google Scholar
Geblinger D, Addadi L, Geiger B. Nano-topography sensing by osteoclasts. J Cell Sci. 2010;123(Pt 9):1503–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gross KA, Muller D, Lucas H, Haynes DR. Osteoclast resorption of thermal spray hydoxyapatite coatings is influenced by surface topography. Acta Biomater. 2012;8(5):1948–56.
Article
PubMed
CAS
Google Scholar
Kong L, Wang B, Yang X, He B, Hao D, Yan L. Integrin-associated molecules and signalling cross talking in osteoclast cytoskeleton regulation. J Cell Mol Med. 2020;24(6):3271–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di Cio S, Gautrot JE. Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater. 2016;30:26–48.
Article
PubMed
Google Scholar
Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468(7323):580–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Q, Xie J, Zhou C, Lai W. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement. Cell Prolif. 2022;55(1):e13172.
Article
PubMed
CAS
Google Scholar
Ozkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials. 2021;267:120497.
Article
PubMed
CAS
Google Scholar
Staszowska AD, Fox-Roberts P, Foxall E, Jones GE, Cox S. Investigation of podosome ring protein arrangement using localization microscopy images. Methods. 2017;115:9–16.
Article
PubMed
CAS
Google Scholar
Pennanen P, Alanne MH, Fazeli E, Deguchi T, Nareoja T, Peltonen S, et al. Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol Cell Biochem. 2017;432(1–2):131–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Veillat V, Spuul P, Daubon T, Egana I, Kramer I, Genot E, Podosomes. Multipurp organelles? Int J Biochem Cell Biol. 2015;65:52–60.
Article
PubMed
CAS
Google Scholar
Li K, Lv L, Shao D, Xie Y, Cao Y, Zheng X. Engineering nanopatterned structures to orchestrate macrophage phenotype by cell shape. J Funct Biomater. 2022;13(1):31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biggs MJ, Richards RG, Gadegaard N, Wilkinson CD, Oreffo RO, Dalby MJ. The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1 + enriched skeletal stem cells. Biomaterials. 2009;30(28):5094–103.
Article
PubMed
CAS
Google Scholar
Kang H, Wong SHD, Pan Q, Li G, Bian L. Anisotropic ligand nanogeometry modulates the adhesion and polarization state of macrophages. Nano Lett. 2019;19(3):1963–75.
Article
PubMed
CAS
Google Scholar
Wang X, Wei W, Krzeszinski JY, Wang Y, Wan Y. A liver-bone endocrine relay by IGFBP1 promotes osteoclastogenesis and mediates FGF21-Induced Bone Resorption. Cell Metab. 2015;22(5):811–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, et al. Osteoimmunity-regulating biomimetically hierarchical Scaffold for augmented bone regeneration. Adv Mater. 2022;34(36):e2202044.
Article
PubMed
Google Scholar
Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504–34.
Article
PubMed
CAS
Google Scholar
Thangam R, Kim MS, Bae G, Kim Y, Kang N, Lee S, et al. Remote switching of Elastic Movement of decorated ligand nanostructures controls the adhesion-regulated polarization of host macrophages. Adv Funct Mater. 2021. https://doi.org/10.1002/adfm.202008698.
Article
Google Scholar
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020;108:22–45.
Article
PubMed
CAS
Google Scholar
Donahue RP, Link JM, Meli VS, Hu JC, Liu WF, Athanasiou KA. Stiffness- and bioactive factor-mediated protection of self-assembled cartilage against macrophage challenge in a novel co-culture system. Cartilage. 2022;13(1):19476035221081464.
Article
PubMed
PubMed Central
Google Scholar
Han YL, Ronceray P, Xu G, Malandrino A, Kamm RD, Lenz M, et al. Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc Natl Acad Sci U S A. 2018;115(16):4075–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Oosten ASG, Chen X, Chin L, Cruz K, Patteson AE, Pogoda K, et al. Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature. 2019;573(7772):96–101.
Article
PubMed
Google Scholar
Li Y, Wong IY, Guo M. Reciprocity of cell mechanics with extracellular stimuli: emerging opportunities for translational medicine. Small. 2022;18:e2107305
Article
PubMed
Google Scholar
Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: a perspective on construction and application. Bioact Mater. 2022;18:15–25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vieites-Prado A, Renier N. Tissue clearing and 3D imaging in developmental biology. Development. 2021;148(18):dev199369.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mizuno H, Kikuta J, Ishii M. In vivo live imaging of bone cells. Histochem Cell Biol. 2018;149(4):417–22.
Article
PubMed
CAS
Google Scholar
Oetjen KA, Lindblad KE, Goswami M, Gui G, Dagur PK, Lai C, et al. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI Insight. 2018;3(23):e124928.
Article
PubMed
PubMed Central
Google Scholar
Severe N, Karabacak NM, Gustafsson K, Baryawno N, Courties G, Kfoury Y, et al. Stress-Induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping. Cell Stem Cell. 2019;25(4):570-83.e7.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Brien EM, Risser GE, Spiller KL. Sequential drug delivery to modulate macrophage behavior and enhance implant integration. Adv Drug Deliv Rev. 2019;149–150:85–94.
Article
PubMed
PubMed Central
Google Scholar
Yu T, Wang W, Nassiri S, Kwan T, Dang C, Liu W, et al. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. J Biomater Sci Polym Ed. 2016;27(8):721–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Veerasubramanian PK, Shao H, Meli VS, Phan TAQ, Luu TU, Liu WF, et al. A Src-H3 acetylation signaling axis integrates macrophage mechanosensation with inflammatory response. Biomaterials. 2021;279:121236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kunrath MF, Diz FM, Magini R, Galarraga-Vinueza ME, Nanointeraction. The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv Colloid Interface Sci. 2020;284:102265.
Article
PubMed
CAS
Google Scholar
Cui L, Zhang J, Zou J, Yang X, Guo H, Tian H, et al. Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials. 2020;230:119617.
Article
PubMed
CAS
Google Scholar
Zhu T, Jiang M, Zhang M, Cui L, Yang X, Wang X, et al. Biofunctionalized composite scaffold to potentiate osteoconduction, angiogenesis, and favorable metabolic microenvironment for osteonecrosis therapy. Bioact Mater. 2022;9:446–60.
Article
PubMed
CAS
Google Scholar
Bachhuka A, Madathiparambil Visalakshan R, Law CS, Santos A, Ebendorff-Heidepriem H, Karnati S, et al. Modulation of macrophages differentiation by nanoscale-engineered geometric and chemical features. ACS Appl Bio Mater. 2020;3(3):1496–505.
Article
PubMed
CAS
Google Scholar
Edwards JR, Weivoda MM. Osteoclasts: malefactors of disease and targets for treatment. Discov Med. 2012;13(70):201–10.
PubMed
Google Scholar
Li H, Xiao Z, Quarles LD, Li W, Osteoporosis. Mechanism, molecular target and current status on drug development. Curr Med Chem. 2021;28(8):1489–507.
Article
PubMed
PubMed Central
CAS
Google Scholar